IDEAS home Printed from https://ideas.repec.org/r/eee/enepol/v30y2002i13p1181-1189.html
   My bibliography  Save this item

Explaining learning curves for wind power

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as


Cited by:

  1. Lindman, Åsa & Söderholm, Patrik, 2012. "Wind power learning rates: A conceptual review and meta-analysis," Energy Economics, Elsevier, vol. 34(3), pages 754-761.
  2. Dali T. Laxton, 2019. "Innovations in the Wind Energy Sector," CERGE-EI Working Papers wp647, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
  3. Rout, Ullash K. & Blesl, Markus & Fahl, Ulrich & Remme, Uwe & Voß, Alfred, 2009. "Uncertainty in the learning rates of energy technologies: An experiment in a global multi-regional energy system model," Energy Policy, Elsevier, vol. 37(11), pages 4927-4942, November.
  4. Kahouli, Sondès, 2011. "Effects of technological learning and uranium price on nuclear cost: Preliminary insights from a multiple factors learning curve and uranium market modeling," Energy Economics, Elsevier, vol. 33(5), pages 840-852, September.
  5. Díaz, Guzmán & Moreno, Blanca & Coto, José & Gómez-Aleixandre, Javier, 2015. "Valuation of wind power distributed generation by using Longstaff–Schwartz option pricing method," Applied Energy, Elsevier, vol. 145(C), pages 223-233.
  6. Peter Strachan & David Lal, 2004. "Wind Energy Policy, Planning and Management Practice in the UK: Hot Air or a Gathering Storm?," Regional Studies, Taylor & Francis Journals, vol. 38(5), pages 549-569.
  7. Trappey, Amy J.C. & Trappey, Charles V. & Liu, Penny H.Y. & Lin, Lee-Cheng & Ou, Jerry J.R., 2013. "A hierarchical cost learning model for developing wind energy infrastructures," International Journal of Production Economics, Elsevier, vol. 146(2), pages 386-391.
  8. Purohit, Pallav & Michaelowa, Axel, 2007. "CDM potential of wind power projects in India," HWWI Research Papers 1-8, Hamburg Institute of International Economics (HWWI).
  9. Wagner Sousa de Oliveira & Antonio Jorge Fernandes, 2012. "Optimization Model for Economic Evaluation of Wind Farms - How to Optimize a Wind Energy Project Economically and Technically," International Journal of Energy Economics and Policy, Econjournals, vol. 2(1), pages 10-20.
  10. Junginger, M. & Faaij, A. & Turkenburg, W. C., 2005. "Global experience curves for wind farms," Energy Policy, Elsevier, vol. 33(2), pages 133-150, January.
  11. Kim, Kyunam & Kim, Yeonbae, 2015. "Role of policy in innovation and international trade of renewable energy technology: Empirical study of solar PV and wind power technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 717-727.
  12. Tian Tang & David Popp, 2014. "The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects," NBER Working Papers 19921, National Bureau of Economic Research, Inc.
  13. Tooraj Jamasb, 2006. "Technical Change Theory and Learning Curves: Patterns of Progress in Energy Technologies," Working Papers EPRG 0608, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
  14. Esmaieli, M. & Ahmadian, M., 2018. "The effect of research and development incentive on wind power investment, a system dynamics approach," Renewable Energy, Elsevier, vol. 126(C), pages 765-773.
  15. Pan, Haoran & Kohler, Jonathan, 2007. "Technological change in energy systems: Learning curves, logistic curves and input-output coefficients," Ecological Economics, Elsevier, vol. 63(4), pages 749-758, September.
  16. Williams, Eric & Hittinger, Eric & Carvalho, Rexon & Williams, Ryan, 2017. "Wind power costs expected to decrease due to technological progress," Energy Policy, Elsevier, vol. 106(C), pages 427-435.
  17. van der Vleuten, Erik & Raven, Rob, 2006. "Lock-in and change: Distributed generation in Denmark in a long-term perspective," Energy Policy, Elsevier, vol. 34(18), pages 3739-3748, December.
  18. Gunther Glenk & Rebecca Meier & Stefan Reichelstein, 2021. "Cost Dynamics of Clean Energy Technologies," Schmalenbach Journal of Business Research, Springer, vol. 73(2), pages 179-206, June.
  19. Desroches, Louis-Benoit & Garbesi, Karina & Kantner, Colleen & Van Buskirk, Robert & Yang, Hung-Chia, 2013. "Incorporating experience curves in appliance standards analysis," Energy Policy, Elsevier, vol. 52(C), pages 402-416.
  20. Yu, C.F. & van Sark, W.G.J.H.M. & Alsema, E.A., 2011. "Unraveling the photovoltaic technology learning curve by incorporation of input price changes and scale effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 324-337, January.
  21. Philipp Beiter & Aubryn Cooperman & Eric Lantz & Tyler Stehly & Matt Shields & Ryan Wiser & Thomas Telsnig & Lena Kitzing & Volker Berkhout & Yuka Kikuchi, 2021. "Wind power costs driven by innovation and experience with further reductions on the horizon," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
  22. Nouni, M.R. & Mullick, S.C. & Kandpal, T.C., 2007. "Techno-economics of small wind electric generator projects for decentralized power supply in India," Energy Policy, Elsevier, vol. 35(4), pages 2491-2506, April.
  23. Kumbaroglu, Gürkan & Karali, Nihan & ArIkan, YIldIz, 2008. "CO2, GDP and RET: An aggregate economic equilibrium analysis for Turkey," Energy Policy, Elsevier, vol. 36(7), pages 2694-2708, July.
  24. Berglund, Christer & Soderholm, Patrik, 2006. "Modeling technical change in energy system analysis: analyzing the introduction of learning-by-doing in bottom-up energy models," Energy Policy, Elsevier, vol. 34(12), pages 1344-1356, August.
  25. Romão da Silva Melo, Rafael & da Silveira Neto, Aristeu, 2012. "Integral analysis of rotors of a wind generator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4809-4817.
  26. Partridge, Ian, 2013. "Renewable electricity generation in India—A learning rate analysis," Energy Policy, Elsevier, vol. 60(C), pages 906-915.
  27. Huh, Sung-Yoon & Lee, Chul-Yong, 2014. "Diffusion of renewable energy technologies in South Korea on incorporating their competitive interrelationships," Energy Policy, Elsevier, vol. 69(C), pages 248-257.
  28. Szabó, Sándor & Jäger-Waldau, Arnulf, 2008. "More competition: Threat or chance for financing renewable electricity?," Energy Policy, Elsevier, vol. 36(4), pages 1436-1447, April.
  29. Yi Zhou & Alun Gu, 2019. "Learning Curve Analysis of Wind Power and Photovoltaics Technology in US: Cost Reduction and the Importance of Research, Development and Demonstration," Sustainability, MDPI, vol. 11(8), pages 1-16, April.
  30. Jong-Hyun Kim & Yong-Gil Lee, 2018. "Learning Curve, Change in Industrial Environment, and Dynamics of Production Activities in Unconventional Energy Resources," Sustainability, MDPI, vol. 10(9), pages 1-11, September.
  31. Tian Tang & David Popp, 2014. "The Learning Process and Technological Change in Wind Power: Evidence from China's CDM Wind Projects," CESifo Working Paper Series 4705, CESifo.
  32. Gao, Cuixia & Sun, Mei & Shen, Bo & Li, Ranran & Tian, Lixin, 2014. "Optimization of China's energy structure based on portfolio theory," Energy, Elsevier, vol. 77(C), pages 890-897.
  33. Radpour, S. & Gemechu, E. & Ahiduzzaman, Md & Kumar, A., 2021. "Developing a framework to assess the long-term adoption of renewable energy technologies in the electric power sector: The effects of carbon price and economic incentives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
  34. Tang, Tian, 2018. "Explaining technological change in the US wind industry: Energy policies, technological learning, and collaboration," Energy Policy, Elsevier, vol. 120(C), pages 197-212.
  35. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng & Vaz-Serra, Paulo, 2022. "Economic and environmental impacts of public investment in clean energy RD&D," Energy Policy, Elsevier, vol. 168(C).
  36. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
  37. Gosens, Jorrit & Hedenus, Fredrik & Sandén, Björn A., 2017. "Faster market growth of wind and PV in late adopters due to global experience build-up," Energy, Elsevier, vol. 131(C), pages 267-278.
  38. Patrik Söderholm & Ger Klaassen, 2007. "Wind Power in Europe: A Simultaneous Innovation–Diffusion Model," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 36(2), pages 163-190, February.
  39. Qiu, Yueming & Anadon, Laura D., 2012. "The price of wind power in China during its expansion: Technology adoption, learning-by-doing, economies of scale, and manufacturing localization," Energy Economics, Elsevier, vol. 34(3), pages 772-785.
  40. Nidhi R. Santen & Mort D. Webster & David Popp & Ignacio Pérez-Arriaga, 2017. "Inter-temporal R&D and capital investment portfolios for the electricity industrys low carbon future," The Energy Journal, International Association for Energy Economics, vol. 0(Number 6).
  41. Rout, Ullash K. & Fahl, Ulrich & Remme, Uwe & Blesl, Markus & Voß, Alfred, 2009. "Endogenous implementation of technology gap in energy optimization models--a systematic analysis within TIMES G5 model," Energy Policy, Elsevier, vol. 37(7), pages 2814-2830, July.
  42. David Popp, 2004. "ENTICE-BR: The Effects of Backstop Technology R&D on Climate Policy Models," NBER Working Papers 10285, National Bureau of Economic Research, Inc.
  43. Zhang, Mingming & Zhou, Dequn & Zhou, Peng, 2014. "A real option model for renewable energy policy evaluation with application to solar PV power generation in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 944-955.
  44. Ole Langniß & Lena Neij, 2004. "National and International Learning with Wind Power," Energy & Environment, , vol. 15(2), pages 175-185, March.
  45. Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, vol. 9(11), pages 1-25, November.
  46. Lu, Ze-Yu & Li, Wen-Hua & Xie, Bai-Chen & Shang, Li-Feng, 2015. "Study on China’s wind power development path—Based on the target for 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 197-208.
  47. Yiqing Li & Weiguo Yang & Lixin Tian & Jie Yang, 2018. "An Evaluation of Investment in a PV Power Generation Project in the Gobi Desert Using a Real Options Model," Energies, MDPI, vol. 11(1), pages 1-16, January.
  48. Bolinger, Mark & Wiser, Ryan, 2009. "Wind power price trends in the United States: Struggling to remain competitive in the face of strong growth," Energy Policy, Elsevier, vol. 37(3), pages 1061-1071, March.
  49. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
  50. Grafström, Jonas & Lindman, Åsa, 2017. "Invention, innovation and diffusion in the European wind power sector," Technological Forecasting and Social Change, Elsevier, vol. 114(C), pages 179-191.
  51. Kyunam Kim & Eunnyeong Heo & Yeonbae Kim, 2017. "Dynamic Policy Impacts on a Technological-Change System of Renewable Energy: An Empirical Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(2), pages 205-236, February.
  52. Elia, A. & Taylor, M. & Ó Gallachóir, B. & Rogan, F., 2020. "Wind turbine cost reduction: A detailed bottom-up analysis of innovation drivers," Energy Policy, Elsevier, vol. 147(C).
  53. Gan, Peck Yean & Li, ZhiDong, 2015. "Quantitative study on long term global solar photovoltaic market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 88-99.
  54. Grafström, Jonas, 2021. "Ratio Working Paper No. 351: Knowledge Spillovers in the Solar energy sector," Ratio Working Papers 351, The Ratio Institute.
  55. Rubin, Edward S & Taylor, Margaret R & Yeh, Sonia & Hounshell, David A, 2004. "Learning curves for environmental technology and their importance for climate policy analysis," Energy, Elsevier, vol. 29(9), pages 1551-1559.
  56. Popp, David, 2006. "ENTICE-BR: The effects of backstop technology R&D on climate policy models," Energy Economics, Elsevier, vol. 28(2), pages 188-222, March.
  57. Szabó, Sándor & Jäger-Waldau, Arnulf & Szabó, László, 2010. "Risk adjusted financial costs of photovoltaics," Energy Policy, Elsevier, vol. 38(7), pages 3807-3819, July.
  58. Kumbaroglu, Gürkan & Madlener, Reinhard & Demirel, Mustafa, 2008. "A real options evaluation model for the diffusion prospects of new renewable power generation technologies," Energy Economics, Elsevier, vol. 30(4), pages 1882-1908, July.
  59. Nidhi R. Santen & Mort D. Webster & David Popp & Ignacio Pérez-Arriaga, 2014. "Inter-temporal R&D and Capital Investment Portfolios for the Electricity Industry's Low Carbon Future," CESifo Working Paper Series 5139, CESifo.
  60. Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
  61. Purohit, Pallav & Kandpal, Tara C., 2005. "Renewable energy technologies for irrigation water pumping in India: projected levels of dissemination, energy delivery and investment requirements using available diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(6), pages 592-607, December.
  62. Armagan Canan, 2023. "Offshore wind energy policy paths: A comparative analysis of Denmark and Germany," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2023(1), pages 35-59.
  63. Yuan, Jiahai & Xu, Yan & Kang, Junjie & Zhang, Xingping & Hu, Zheng, 2014. "Nonlinear integrated resource strategic planning model and case study in China's power sector planning," Energy, Elsevier, vol. 67(C), pages 27-40.
  64. Greaker, Mads & Lund Sagen, Eirik, 2008. "Explaining experience curves for new energy technologies: A case study of liquefied natural gas," Energy Economics, Elsevier, vol. 30(6), pages 2899-2911, November.
  65. Paulo Henrique de Mello Santana, 2015. "Cost-effectiveness as Energy Policy Mechanisms: The Paradox of Technology-neutral and Technology-specific Policies in the Short and Long Term," Working Papers Working Paper 2015-02, Regional Research Institute, West Virginia University.
  66. Wen, Xin & Jaxa-Rozen, Marc & Trutnevyte, Evelina, 2023. "Hindcasting to inform the development of bottom-up electricity system models: The cases of endogenous demand and technology learning," Applied Energy, Elsevier, vol. 340(C).
  67. Komarov, Dragan & Stupar, Slobodan & Simonović, Aleksandar & Stanojević, Marija, 2012. "Prospects of wind energy sector development in Serbia with relevant regulatory framework overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2618-2630.
  68. Wu, X.D. & Yang, Q. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2016. "Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2×600MW retrofitted oxyfuel power plant as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1274-1285.
  69. Xu, Mei & Xie, Pu & Xie, Bai-Chen, 2020. "Study of China's optimal solar photovoltaic power development path to 2050," Resources Policy, Elsevier, vol. 65(C).
  70. Berry, David, 2009. "Innovation and the price of wind energy in the US," Energy Policy, Elsevier, vol. 37(11), pages 4493-4499, November.
  71. Glenk, Gunther & Meier, Rebecca & Reichelstein, Stefan, 2021. "Cost dynamics of clean energy technologies," ZEW Discussion Papers 21-054, ZEW - Leibniz Centre for European Economic Research.
  72. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
  73. Brito, Thiago Luis Felipe & Islam, Towhidul & Stettler, Marc & Mouette, Dominique & Meade, Nigel & Moutinho dos Santos, Edmilson, 2019. "Transitions between technological generations of alternative fuel vehicles in Brazil," Energy Policy, Elsevier, vol. 134(C).
  74. Nidhi R. Santen & Mort D. Webster & David Popp & Ignacio Pérez-Arriaga, 2014. "Inter-temporal R&D and Capital Investment Portfolios for the Electricity Industry’s Low Carbon Future," NBER Working Papers 20783, National Bureau of Economic Research, Inc.
  75. Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
  76. Sergio Giaccaria & Silvana Dalmazzone, 2012. "Patterns of induced diffusion of renewable energy capacity: The role of regulatory design and decentralization," Carlo Alberto Notebooks 282, Collegio Carlo Alberto.
  77. de Mello Santana, Paulo Henrique, 2016. "Cost-effectiveness as energy policy mechanisms: The paradox of technology-neutral and technology-specific policies in the short and long term," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1216-1222.
  78. Söderholm, Patrik & Sundqvist, Thomas, 2007. "Empirical challenges in the use of learning curves for assessing the economic prospects of renewable energy technologies," Renewable Energy, Elsevier, vol. 32(15), pages 2559-2578.
  79. Hong, Sungjun & Chung, Yanghon & Woo, Chungwon, 2015. "Scenario analysis for estimating the learning rate of photovoltaic power generation based on learning curve theory in South Korea," Energy, Elsevier, vol. 79(C), pages 80-89.
  80. Blanco, María Isabel, 2009. "The economics of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1372-1382, August.
  81. Castrejon-Campos, Omar & Aye, Lu & Hui, Felix Kin Peng, 2022. "Effects of learning curve models on onshore wind and solar PV cost developments in the USA," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
  82. Enevoldsen, Peter & Valentine, Scott Victor & Sovacool, Benjamin K., 2018. "Insights into wind sites: Critically assessing the innovation, cost, and performance dynamics of global wind energy development," Energy Policy, Elsevier, vol. 120(C), pages 1-7.
  83. Rao, K. Usha & Kishore, V.V.N., 2010. "A review of technology diffusion models with special reference to renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1070-1078, April.
  84. Xu, Jiuping & Li, Li & Zheng, Bobo, 2016. "Wind energy generation technological paradigm diffusion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 436-449.
IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.