Advanced Search
MyIDEAS: Login

Clustering life trajectories: A new divisive hierarchical clustering algorithm for discrete-valued discrete time series

Contents:

Author Info

  • Dlugosz, Stephan

Abstract

A new algorithm for clustering life course trajectories is presented and tested with large register data. Life courses are represented as sequences on a monthly timescale for the working-life with an age span from 16-65. A meaningful clustering result for this kind of data provides interesting subgroups with similar life course trajectories. The high sampling rate allows precise discrimination of the different subgroups, but it produces a lot of highly correlated data for phases with low variability. The main challenge is to select the variables (points in time) that carry most of the relevant information. The new algorithm deals with this problem by simultaneously clustering and identifying critical junctures for each of the relevant subgroups. The developed divisive algorithm is able to handle large amounts of data with multiple dimensions within reasonable time. This is demonstrated on data from the Federal German pension insurance. --

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://econstor.eu/bitstream/10419/44458/1/654047626.pdf
Download Restriction: no

Bibliographic Info

Paper provided by ZEW - Zentrum für Europäische Wirtschaftsforschung / Center for European Economic Research in its series ZEW Discussion Papers with number 11-015.

as in new window
Length:
Date of creation: 2011
Date of revision:
Handle: RePEc:zbw:zewdip:11015

Contact details of provider:
Postal: L 7,1; D - 68161 Mannheim
Phone: +49/621/1235-01
Fax: +49/621/1235-224
Email:
Web page: http://www.zew.de/
More information through EDIRC

Related research

Keywords: Clustering; measures of association; discrete data; time series;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Raffaella Piccarreta & Francesco C. Billari, 2007. "Clustering work and family trajectories by using a divisive algorithm," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(4), pages 1061-1078.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:zbw:zewdip:11015. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.