Advanced Search
MyIDEAS: Login to save this paper or follow this series

A blocking and regularization approach to high dimensional realized covariance estimation

Contents:

Author Info

  • Hautsch, Nikolaus
  • Kyj, Lada M.
  • Hautsch, Nikolaus

Abstract

We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven grouping of assets of similar trading frequency ensures the reduction of data loss due to refresh time sampling. In an extensive simulation study mimicking the empirical features of the S&P 1500 universe we show that the 'RnB' estimator yields efficiency gains and outperforms competing kernel estimators for varying liquidity settings, noise-to-signal ratios, and dimensions. An empirical application of forecasting daily covariances of the S&P 500 index confirms the simulation results. --

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://econstor.eu/bitstream/10419/43197/1/615079768.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Center for Financial Studies (CFS) in its series CFS Working Paper Series with number 2009/20.

as in new window
Length:
Date of creation: 2009
Date of revision:
Handle: RePEc:zbw:cfswop:200920

Contact details of provider:
Postal: House of Finance, Grüneburgplatz 1, HPF H5, D-60323 Frankfurt am Main
Phone: +49 (0)69 798-30050
Fax: +49 (0)69 798-30077
Email:
Web page: http://www.ifk-cfs.de/
More information through EDIRC

Related research

Keywords: Covariance Estimation; Blocking; Realized Kernel; Regularization; Microstructure; Asynchronous Trading;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Griffin, Jim E. & Oomen, Roel C.A., 2011. "Covariance measurement in the presence of non-synchronous trading and market microstructure noise," Journal of Econometrics, Elsevier, Elsevier, vol. 160(1), pages 58-68, January.
  2. deB. Harris, Frederick H. & McInish, Thomas H. & Shoesmith, Gary L. & Wood, Robert A., 1995. "Cointegration, Error Correction, and Price Discovery on Informationally Linked Security Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, Cambridge University Press, vol. 30(04), pages 563-579, December.
  3. Gilles Zumbach, 2009. "The empirical properties of large covariance matrices," Papers 0903.1525, arXiv.org.
  4. Torben G. Andersen & Tim Bollerslev & Per Frederiksen & Morten �rregaard Nielsen, 2010. "Continuous-time models, realized volatilities, and testable distributional implications for daily stock returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., John Wiley & Sons, Ltd., vol. 25(2), pages 233-261.
  5. Ravi Jagannathan & Tongshu Ma, 2002. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," NBER Working Papers 8922, National Bureau of Economic Research, Inc.
  6. Alexei Onatski, 2009. "Testing Hypotheses About the Number of Factors in Large Factor Models," Econometrica, Econometric Society, Econometric Society, vol. 77(5), pages 1447-1479, 09.
  7. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, Elsevier, vol. 10(5), pages 603-621, December.
  8. Valeri Voev & Asger Lunde, 2007. "Integrated Covariance Estimation using High-frequency Data in the Presence of Noise," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 5(1), pages 68-104.
  9. Ole E. Barndorff-Nielsen & Neil Shephard, 2000. "Econometric analysis of realised volatility and its use in estimating stochastic volatility models," Economics Papers 2001-W4, Economics Group, Nuffield College, University of Oxford, revised 05 Jul 2001.
  10. Matteo Bonato & Massimiliano Caporin & Angelo Ranaldo, 2009. "Forecasting realized (co)variances with a block structure Wishart autoregressive model," Working Papers 2009-03, Swiss National Bank.
  11. Vincenzo Tola & Fabrizio Lillo & Mauro Gallegati & Rosario N. Mantegna, 2005. "Cluster analysis for portfolio optimization," Papers physics/0507006, arXiv.org.
  12. Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, Elsevier, vol. 79(3), pages 655-692, March.
  13. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Working Papers in Economics, University of Canterbury, Department of Economics and Finance 14/10, University of Canterbury, Department of Economics and Finance.
  2. Griffin, Jim E. & Oomen, Roel C.A., 2011. "Covariance measurement in the presence of non-synchronous trading and market microstructure noise," Journal of Econometrics, Elsevier, Elsevier, vol. 160(1), pages 58-68, January.
  3. Corsi, Fulvio & Peluso, Stefano & Audrino, Francesco, 2012. "Missing in Asynchronicity: A Kalman-EM Approach for Multivariate Realized Covariance Estimation," Economics Working Paper Series 1202, University of St. Gallen, School of Economics and Political Science.
  4. Torben G. Andersen & Tim Bollerslev & Peter F. Christoffersen & Francis X. Diebold, 2011. "Financial Risk Measurement for Financial Risk Management," PIER Working Paper Archive 11-037, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
  5. Manabu Asai & Michael McAleer, 2014. "Forecasting Co-Volatilities via Factor Models with Asymmetry and Long Memory in Realized Covariance," Tinbergen Institute Discussion Papers 14-037/III, Tinbergen Institute.
  6. Matthias R. Fengler & Ostap Okhrin, 2012. "Realized Copula," SFB 649 Discussion Papers SFB649DP2012-034, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  7. Kris Boudt & Sébastien Laurent & Asger Lunde & Rogier Quaedvlieg, 2014. "Positive Semidefinite Integrated Covariance Estimation, Factorizations and Asynchronicity," CREATES Research Papers 2014-05, School of Economics and Management, University of Aarhus.
  8. Roxana Halbleib & Valeri Voev, 2012. "Forecasting Covariance Matrices: A Mixed Frequency Approach," Working Paper Series of the Department of Economics, University of Konstanz 2012-30, Department of Economics, University of Konstanz.
  9. Matteo Luciani & David Veredas, 2012. "A model for vast panels of volatilities," Banco de Espa�a Working Papers 1230, Banco de Espa�a.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:zbw:cfswop:200920. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (ZBW - German National Library of Economics).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.