Advanced Search
MyIDEAS: Login to save this paper or follow this series

Prewhitening Bias in HAC Estimation

Contents:

Author Info

  • Peter C.B. Phillips

    ()
    (Yale University, Cowles Foundation)

  • Chi-Young Choi

    ()
    (University of New Hampshire, Department of Economics)

  • Donggyu Sul

    ()
    (University of Auckland, Faculty of Business & Economics, Department of Economics)

Abstract

HAC estimation commonly involves the use of prewhitening filters based on simple autoregressive models. In such applications, small sample bias in the estimation of autoregressive coefficients is transmitted to the recoloring filter, leading to HAC variance estimates that can be badly biased. The present paper provides an analysis of these issues using asymptotic expansions and simulations. The approach we recommend involves the use of recursive demeaning procedures that mitigate the effects of small sample autoregressive bias. Moreover, a commonly-used restriction rule on the prewhitening estimates (that first order autoregressive coefficient estimates, or largest eigenvalues, greater than 0.97 be replaced by 0.97) adversely interferes with the power of unit root and KPSS tests. We provide a new boundary condition rule that improves the size and power properties of these tests. Some illustrations are given of the effects of these adjustments on the size and power of KPSS testing. Using prewhitened HAC estimates and the new boundary condition rule, the KPSS test is consistent, in contrast to KPSS testing that uses conventional prewhitened HAC estimates (Lee, 1996).

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://papers.ssrn.com/sol3/papers.cfm?abstract_id=446680
Download Restriction: no

Bibliographic Info

Paper provided by Yale School of Management in its series Yale School of Management Working Papers with number ysm426.

as in new window
Length:
Date of creation: 28 Jul 2004
Date of revision:
Handle: RePEc:ysm:somwrk:ysm426

Contact details of provider:
Web page: http://icf.som.yale.edu/
More information through EDIRC

Related research

Keywords: Bias; HAC estimator; KPSS testing; long run variance; prewhitening; recursive demeaning;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ysm:somwrk:ysm426. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.