Advanced Search
MyIDEAS: Login to save this paper or follow this series

A Simple Decentralized Institution for Learning Competitive Equilibrium

Contents:

Author Info

  • Sean Crockett
  • Shyam Sunder
  • Stephen Spear

Abstract

The epsilon-intelligent competitive equilibrium algorithm is a decentralized alternative to Walrus' tatonnement procedure for markets to arrive at competitive equilibrium. We build on the Gode-Spear-Sunder zero-intelligent algorithm in which random generation of bids and offers from agents' welfare-enhancing opportunity sets generates Pareto optimal allocations in a pure exchange economy. We permit agents to know if they are subsidizing others at such allocations, and to veto such allocations, restricting the subsequent iterations of the algorithm only to those trades that are both Pareto-improving and provide strictly greater wealth, and ultimately utility, for such agents. In this simple institution actions of minimally intelligent agents based on local information can lead the market to approximate competitive equilibrium in a larger set of economies than the tatonnement process would allow. This helps address one of the major shortcomings of the Arrow-Debreu-McKenzie model with respect to the instability of tatonnement in an open set of economies. It also addresses the behavioral critique of mathematically derived equilibria for the inability of cognitively-limited humans to maximize. The proof of convergence of the algorithm presented here also provides a way of showing the existence of competitive equilibrium for monotonic, convex exchange economies with heterogeneous agents and many goods without application of a fixed-point theorem.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://icfpub.som.yale.edu/publications/2646
Download Restriction: no

Bibliographic Info

Paper provided by Yale School of Management in its series Yale School of Management Working Papers with number ysm318.

as in new window
Length:
Date of creation: 01 Dec 2002
Date of revision: 01 Feb 2003
Handle: RePEc:ysm:somwrk:ysm318

Contact details of provider:
Web page: http://icf.som.yale.edu/
More information through EDIRC

Related research

Keywords: Learning Competitive Equilibrium; Minimal Rationality; Allocative Efficiency; Scarfs' Example;

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Duffy, John, 2006. "Agent-Based Models and Human Subject Experiments," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 19, pages 949-1011 Elsevier.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ysm:somwrk:ysm318. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.