Advanced Search
MyIDEAS: Login

Data Augmentation in Limited-Dependent Variable Models

Contents:

Author Info

  • Roberto Leon-Gonzalez

Abstract

This paper proposes a scheme that speeds up the convergence of Markov Chain Monte Carlo (MCMC) algorithms in the context of limited-dependent variable models. The algorithm reduces autocorrelations more than the recently proposed Parameter Expansion Data Augumentation (PX-DA) algorithm. In addition, the paper provides an algorithm to sample a variance-covariance matrix with restrictions directly from the conditional posterior distribution. Finally, it is shown that the PX-DA algorithm, as applied to the multivariate probit model, can be seen as sampling from a different parameterization of the model. However, in some cases the PX-DA algorithm is not invariant to reparameterizations, and a slightly different algorithm is proposed.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.york.ac.uk/media/economics/documents/discussionpapers/2002/0209.pdf
File Function: Main text
Download Restriction: no

Bibliographic Info

Paper provided by Department of Economics, University of York in its series Discussion Papers with number 02/09.

as in new window
Length:
Date of creation:
Date of revision:
Handle: RePEc:yor:yorken:02/09

Contact details of provider:
Postal: Department of Economics and Related Studies, University of York, York, YO10 5DD, United Kingdom
Phone: (0)1904 323776
Fax: (0)1904 323759
Email:
Web page: http://www.york.ac.uk/economics/
More information through EDIRC

Related research

Keywords: data augmentation; parameter-expansion-data-augmentation; inverted wishart; multivariate probit; reparameterization.;

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. McCulloch, Robert E. & Polson, Nicholas G. & Rossi, Peter E., 2000. "A Bayesian analysis of the multinomial probit model with fully identified parameters," Journal of Econometrics, Elsevier, vol. 99(1), pages 173-193, November.
  2. Nobile, Agostino, 2000. "Comment: Bayesian multinomial probit models with a normalization constraint," Journal of Econometrics, Elsevier, vol. 99(2), pages 335-345, December.
  3. Bauwens, Luc & Lubrano, Michel & Richard, Jean-Francois, 2000. "Bayesian Inference in Dynamic Econometric Models," OUP Catalogue, Oxford University Press, number 9780198773139.
  4. Amit, Yali, 1991. "On rates of convergence of stochastic relaxation for Gaussian and non-Gaussian distributions," Journal of Multivariate Analysis, Elsevier, vol. 38(1), pages 82-99, July.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:yor:yorken:02/09. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Paul Hodgson).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.