Advanced Search
MyIDEAS: Login to save this paper or follow this series

Estimating Lifetime or Episode-of-illness Costs

Contents:

Author Info

  • Basu A
  • Manning WG

Abstract

Most analysis of health care costs examine costs for fixed periods of time (e.g., annual) but are not well suited for the analysis of either lifetime costs or per episode of illness cost, such as those that occur in cost-effectiveness and some cost of illness analyses. These questions involve use of data with varying periods of observation and right censoring of cases before death or the end of the episode of illness. Although some work has been done on this issue, there are concerns about the robustness of the existing methods, especially given the extreme skewness typical of health care costs generally and these data specifically, as well as the prominence of observations with no expenditure for some short periods of observation. In this paper, we identify a major bias associated with estimators that use inverse probability weighting with the survival from censoring probabilities in estimating mean cumulative costs (Bang-Tsiatis-Lin). We propose an alternative that extends the class of two-part models to deal with random right censoring (e.g., administrative censoring), and more fully incorporates the information from the censored periods. Our model also addresses issues about the time to death in these analyses. Several simulations are conducted to highlight our proposed estimator compared to alternatives. The results support the theoretical result indicating that estimators based on inverse probability weighting yield biased estimates of accumulated costs in situations with substantial censoring. Our alternative is consistent and more efficient for these designs. We apply this approach and compare it to the alternatives from the literature using data from the Medicare-SEER files on prostate cancer using within and split sample methods. Our results indicate that the Bang-Tsiatis-Lin approach yields negative estimates of the ten year incremental costs of worse stages of prostate cancer relative to better initial grade. Our alternative indicates the opposite. The discrepancy is large in magnitude and statistically significant.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.york.ac.uk/media/economics/documents/herc/wp/09_12.pdf
File Function: Main text
Download Restriction: no

Bibliographic Info

Paper provided by HEDG, c/o Department of Economics, University of York in its series Health, Econometrics and Data Group (HEDG) Working Papers with number 09/12.

as in new window
Length:
Date of creation: Jul 2009
Date of revision:
Handle: RePEc:yor:hectdg:09/12

Contact details of provider:
Postal: HEDG/HERC, Department of Economics and Related Studies, University of York, York, YO10 5DD, United Kingdom
Phone: (0)1904 323776
Fax: (0)1904 323759
Email:
Web page: http://www.york.ac.uk/economics/postgrad/herc/hedg/
More information through EDIRC

Related research

Keywords:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. O'Hagan, Anthony & Stevens, John W., 2004. "On estimators of medical costs with censored data," Journal of Health Economics, Elsevier, vol. 23(3), pages 615-625, May.
  2. Etzioni, Ruth D. & Feuer, Eric J. & Sullivan, Sean D. & Lin, Danyu & Hu, Chengcheng & Ramsey, Scott D., 1999. "On the use of survival analysis techniques to estimate medical care costs," Journal of Health Economics, Elsevier, vol. 18(3), pages 365-380, June.
  3. Raikou, M. & McGuire, A., 2004. "Estimating medical care costs under conditions of censoring," Journal of Health Economics, Elsevier, vol. 23(3), pages 443-470, May.
  4. Manning, Willard G. & Basu, Anirban & Mullahy, John, 2005. "Generalized modeling approaches to risk adjustment of skewed outcomes data," Journal of Health Economics, Elsevier, vol. 24(3), pages 465-488, May.
  5. Anirban Basu & Willard G. Manning & John Mullahy, 2004. "Comparing alternative models: log vs Cox proportional hazard?," Health Economics, John Wiley & Sons, Ltd., vol. 13(8), pages 749-765.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:yor:hectdg:09/12. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jane Rawlings).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.