Advanced Search
MyIDEAS: Login to save this paper or follow this series

Ideology and existence of 50%-majority equilibria in multidimensional spatial voting models

Contents:

Author Info

  • Herve Cres

    (HEC Paris)

  • M. Utku Unver

    (Koc University)

Abstract

When aggregating individual preferences through the majority rule in an n-dimensional spatial voting model, the `worst-case' scenario is a social choice configuration where no political equilibrium exists unless a super majority rate as high as 1-1/n is adopted. In this paper we assume that a lower d-dimensional (d smaller than n) linear map spans the possible candidates' platforms. These d `ideological' dimensions imply some linkages between the n political issues. We randomize over these linkages and show that there almost surely exists a 50%-majority equilibria in the above worst-case scenario, when n grows to infinity. Moreover the equilibrium is the mean voter. The speed of convergence (toward 50%) of the super majority rate guaranteeing existence of equilibrium is computed for d=1 and 2.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://128.118.178.162/eps/mic/papers/0506/0506007.pdf
Download Restriction: no

Bibliographic Info

Paper provided by EconWPA in its series Microeconomics with number 0506007.

as in new window
Length:
Date of creation: 21 Jun 2005
Date of revision:
Handle: RePEc:wpa:wuwpmi:0506007

Note: Type of Document - pdf
Contact details of provider:
Web page: http://128.118.178.162

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Caplin, Andrew S & Nalebuff, Barry J, 1988. "On 64%-Majority Rule," Econometrica, Econometric Society, vol. 56(4), pages 787-814, July.
  2. Anthony Downs, 1957. "An Economic Theory of Political Action in a Democracy," Journal of Political Economy, University of Chicago Press, vol. 65, pages 135.
  3. Grandmont, Jean-Michel, 1978. "Intermediate Preferences and the Majority Rule," Econometrica, Econometric Society, vol. 46(2), pages 317-30, March.
  4. Hervé Crès & Mich Tvede, 2009. "Production in Incomplete Markets: Expectations Matter for Political Stability," Discussion Papers 09-01, University of Copenhagen. Department of Economics.
  5. Ferejohn, John A. & Grether, David M., . "On a Class of Rational Social Decision Procedures," Working Papers 25, California Institute of Technology, Division of the Humanities and Social Sciences.
  6. Andrew Caplin & Barry Nalebuff, 1990. "Aggregation and Social Choice: A Mean Voter Theorem," Cowles Foundation Discussion Papers 938, Cowles Foundation for Research in Economics, Yale University.
  7. Crès, Hervé & Tvede, Mich, 2006. "Portfolio diversification and internalization of production externalities through majority voting," Les Cahiers de Recherche 816, HEC Paris.
  8. Greenberg, Joseph, 1979. "Consistent Majority Rules over Compact Sets of Alternatives," Econometrica, Econometric Society, vol. 47(3), pages 627-36, May.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpmi:0506007. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.