IDEAS home Printed from https://ideas.repec.org/p/wpa/wuwpfi/0512021.html
   My bibliography  Save this paper

Application Of Garch Models In Forecasting The Volatility Of Agricultural Commodities

Author

Listed:
  • Tony Guida

    (Université de Savoie)

  • Olivier Matringe

    (UNCTAD)

Abstract

This paper examines the forecasting performance of GARCH’s models used with agricultural commodities data. We compare different possible sources of forecasting improvement, using various statistical distributions and models. We have chosen to confine our analysis on four indices which are the cocoa LIFFE continuous futures, the cocoa NYBOT continuous futures, the coffee NYBOT continuous futures and the CAC 40, the French major stock index. As one may see the sample of indices is containing a genuine stock index also. The implied goal is to find out if the GARCH models are more fitted for stock indices than for agricultural commodities. The forecasts and the predictive power are evaluated using traditional methods such as the coefficient of determination in the regression of the true variance on the predicted one. We find that agricultural commodities time series could not be used with the same methodology than the financial series. Moreover it is interesting to point out that no real “model leader” was found in this sample of commodities. Finally increased forecast performance is not solely observed using non-gaussian distribution in commodities.

Suggested Citation

  • Tony Guida & Olivier Matringe, 2005. "Application Of Garch Models In Forecasting The Volatility Of Agricultural Commodities," Finance 0512021, University Library of Munich, Germany.
  • Handle: RePEc:wpa:wuwpfi:0512021
    Note: Type of Document - zip; pages: 17
    as

    Download full text from publisher

    File URL: https://econwpa.ub.uni-muenchen.de/econ-wp/fin/papers/0512/0512021.zip
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    2. French, Kenneth R. & Schwert, G. William & Stambaugh, Robert F., 1987. "Expected stock returns and volatility," Journal of Financial Economics, Elsevier, vol. 19(1), pages 3-29, September.
    3. Andersen, Torben G. & Bollerslev, Tim, 1997. "Intraday periodicity and volatility persistence in financial markets," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 115-158, June.
    4. Baillie, Richard T & Myers, Robert J, 1991. "Bivariate GARCH Estimation of the Optimal Commodity Futures Hedge," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(2), pages 109-124, April-Jun.
    5. Engle, Robert F & Ng, Victor K, 1993. "Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-1778, December.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    8. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Geoffrey F. Loudon & Wing H. Watt & Pradeep K. Yadav, 2000. "An empirical analysis of alternative parametric ARCH models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(2), pages 117-136.
    2. Louzis, Dimitrios P. & Xanthopoulos-Sisinis, Spyros & Refenes, Apostolos P., 2011. "Are realized volatility models good candidates for alternative Value at Risk prediction strategies?," MPRA Paper 30364, University Library of Munich, Germany.
    3. Aliyev, Fuzuli & Ajayi, Richard & Gasim, Nijat, 2020. "Modelling asymmetric market volatility with univariate GARCH models: Evidence from Nasdaq-100," The Journal of Economic Asymmetries, Elsevier, vol. 22(C).
    4. Donaldson, R. Glen & Kamstra, Mark, 1997. "An artificial neural network-GARCH model for international stock return volatility," Journal of Empirical Finance, Elsevier, vol. 4(1), pages 17-46, January.
    5. Donggyu Kim & Minseok Shin, 2023. "Volatility models for stylized facts of high‐frequency financial data," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(3), pages 262-279, May.
    6. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    7. P. Kearns & A.R. Pagan, 1993. "Australian Stock Market Volatility: 1875–1987," The Economic Record, The Economic Society of Australia, vol. 69(2), pages 163-178, June.
    8. Diongue, Abdou Kâ & Guégan, Dominique, 2007. "The stationary seasonal hyperbolic asymmetric power ARCH model," Statistics & Probability Letters, Elsevier, vol. 77(11), pages 1158-1164, June.
    9. Hentschel, Ludger, 1995. "All in the family Nesting symmetric and asymmetric GARCH models," Journal of Financial Economics, Elsevier, vol. 39(1), pages 71-104, September.
    10. Meddahi, Nour & Renault, Eric, 2004. "Temporal aggregation of volatility models," Journal of Econometrics, Elsevier, vol. 119(2), pages 355-379, April.
    11. Pramod Kumar Naik & Puja Padhi, 2015. "Stock Market Volatility and Equity Trading Volume: Empirical Examination from Brazil, Russia, India and China (BRIC)," Global Business Review, International Management Institute, vol. 16(5_suppl), pages 28-45, October.
    12. Jones, Charles M. & Lamont, Owen & Lumsdaine, Robin L., 1998. "Macroeconomic news and bond market volatility," Journal of Financial Economics, Elsevier, vol. 47(3), pages 315-337, March.
    13. Leung, Henry & Schiereck, Dirk & Schroeder, Florian, 2017. "Volatility spillovers and determinants of contagion: Exchange rate and equity markets during crises," Economic Modelling, Elsevier, vol. 61(C), pages 169-180.
    14. Gregory Koutmos & Andreas Pericli & Lenos Trigeorgis, 2006. "Short-term Dynamics in the Cyprus Stock Exchange," The European Journal of Finance, Taylor & Francis Journals, vol. 12(3), pages 205-216.
    15. Kim, Dongcheol & Kon, Stanley J., 1999. "Structural change and time dependence in models of stock returns," Journal of Empirical Finance, Elsevier, vol. 6(3), pages 283-308, September.
    16. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654, January.
    17. Bekaert, Geert & Engstrom, Eric & Ermolov, Andrey, 2015. "Bad environments, good environments: A non-Gaussian asymmetric volatility model," Journal of Econometrics, Elsevier, vol. 186(1), pages 258-275.
    18. Kian Teng Kwek & Kuan Nee Koay, 2006. "Exchange rate volatility and volatility asymmetries: an application to finding a natural dollar currency," Applied Economics, Taylor & Francis Journals, vol. 38(3), pages 307-323.
    19. Peter Christoffersen & Kris Jacobs, 2002. "Which Volatility Model for Option Valuation?," CIRANO Working Papers 2002s-33, CIRANO.
    20. Matthieu Garcin & Clément Goulet, 2015. "Non-parameteric news impact curve: a variational approach," Documents de travail du Centre d'Economie de la Sorbonne 15086rr, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Feb 2017.

    More about this item

    Keywords

    GARCH; commodities; volatility; forecasting; risk management;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0512021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: EconWPA (email available below). General contact details of provider: https://econwpa.ub.uni-muenchen.de .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.