Advanced Search
MyIDEAS: Login to save this paper or follow this series

Log-Periodic Crashes Revisited

Contents:

Author Info

  • Raul Matsushita

    (University of Brasilia)

  • Iram Gleria

    (Federal University of Alagoas)

  • Annibal Figueiredo

    (University of Brasilia)

  • Sergio Da Silva

    (Federal University of Santa Catarina)

Abstract

We revisit the finding that crashes can be deterministic and governed by log-periodic formulas [D. Sornette, A. Johansen, Significance of log-periodic precursors to financial crashes, Quant. Finance 1 (2001) 452–471; D. Sornette, W.X. Zhou, The US 2000–2002 market descent: how much longer and deeper?, Quant. Finance 2 (2002) 468–481]. One- and two-harmonic equations are usually employed to fit daily data during bubble episodes. But a three-harmonics has been shown to fit anti-bubbles [A. Johansen, D. Sornette, Financial “anti-bubbles”: log-periodicity in gold and Nikkei collapses, Int. J. Mod. Phys. C 10 (1999) 563–575]. Here we show that the three-harmonic formula can work for bubble episodes as well as anti-bubbles. This is illustrated with daily data from the Brazilian real-US dollar exchange rate. And we also show that the three-harmonics can fit an intraday data set from that foreign exchange rate.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://128.118.178.162/eps/fin/papers/0508/0508005.pdf
Download Restriction: no

Bibliographic Info

Paper provided by EconWPA in its series Finance with number 0508005.

as in new window
Length:
Date of creation: 02 Aug 2005
Date of revision:
Handle: RePEc:wpa:wuwpfi:0508005

Note: Type of Document - pdf
Contact details of provider:
Web page: http://128.118.178.162

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Papers cond-mat/0106520, arXiv.org.
  2. D. Sornette & A. Johansen, 2001. "Significance of log-periodic precursors to financial crashes," Quantitative Finance, Taylor & Francis Journals, vol. 1(4), pages 452-471.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Matsushita, Raul & Figueiredo, Annibal & Da Silva, Sergio, 2012. "A suggested statistical test for measuring bivariate nonlinear dependence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4891-4898.
  2. Wosnitza, Jan Henrik & Leker, Jens, 2014. "Can log-periodic power law structures arise from random fluctuations?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 401(C), pages 228-250.
  3. Sornette, Didier & Woodard, Ryan & Yan, Wanfeng & Zhou, Wei-Xing, 2013. "Clarifications to questions and criticisms on the Johansen–Ledoit–Sornette financial bubble model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(19), pages 4417-4428.
  4. Cajueiro, Daniel O. & Tabak, Benjamin M. & Werneck, Filipe K., 2009. "Can we predict crashes? The case of the Brazilian stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(8), pages 1603-1609.
  5. Wosnitza, Jan Henrik & Denz, Cornelia, 2013. "Liquidity crisis detection: An application of log-periodic power law structures to default prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3666-3681.
  6. Filimonov, V. & Sornette, D., 2013. "A stable and robust calibration scheme of the log-periodic power law model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(17), pages 3698-3707.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpfi:0508005. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.