Advanced Search
MyIDEAS: Login to save this paper or follow this series

Rank Test Based On Matrix Perturbation Theory

Contents:

Author Info

  • Zaka Ratsimalahelo

    (University of Franche-Comté)

Registered author(s):

    Abstract

    In this paper, we propose methods of the determination of the rank of matrix. We consider a rank test for an unobserved matrix for which an estimate exists having normal asymptotic distribution of order N1/2 where N is the sample size. The test statistic is based on the smallest estimated singular values. Using Matrix Perturbation Theory, the smallest singular values of random matrix converge asymptotically to zero in the order O(N-1) and the corresponding left and right singular vectors converge asymptotically in the order O(N-1/2). Moreover, the asymptotic distribution of the test statistic is seen to be chi-squared. The test has advantages over standard tests in being easier to compute. Two approaches are be considered sequential testing strategy and information theoretic criterion. We establish a strongly consistent of the determination of the rank of matrix using both the two approaches. Some economic applications are discussed and simulation evidence is given for this test. Its performance is compared to that of the LDU rank tests of Gill and Lewbel (1992) and Cragg and Donald (1996).

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://128.118.178.162/eps/em/papers/0306/0306008.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by EconWPA in its series Econometrics with number 0306008.

    as in new window
    Length: 39 pages
    Date of creation: 20 Jun 2003
    Date of revision:
    Handle: RePEc:wpa:wuwpem:0306008

    Note: Type of Document - Acrobat PDF; prepared on PC, Scientific- Workplace; to print on HP/PostScript/; pages: 39 ; figures: included
    Contact details of provider:
    Web page: http://128.118.178.162

    Related research

    Keywords: Rank Testing; Matrix Perturbation Theory; Rank Estimation; Singular Value Decomposition; Sequential Testing Procedure; Information Theoretic Criterion.;

    Find related papers by JEL classification:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Alastair R. Hall & Glenn D. Rudebusch & David W. Wilcox, 1994. "Judging instrument relevance in instrumental variables estimation," Finance and Economics Discussion Series 94-3, Board of Governors of the Federal Reserve System (U.S.).
    2. Donald W.K. Andrews, 1985. "Asymptotic Results for Generalized Wald Tests," Cowles Foundation Discussion Papers 761R, Cowles Foundation for Research in Economics, Yale University, revised Apr 1986.
    3. Pötscher, B.M., 1991. "Effects of Model Selection on Inference," Econometric Theory, Cambridge University Press, vol. 7(02), pages 163-185, June.
    4. Lewbel, Arthur, 1991. "The Rank of Demand Systems: Theory and Nonparametric Estimation," Econometrica, Econometric Society, vol. 59(3), pages 711-30, May.
    5. Cragg, John G. & Donald, Stephen G., 1997. "Inferring the rank of a matrix," Journal of Econometrics, Elsevier, vol. 76(1-2), pages 223-250.
    6. Sin, Chor-Yiu & White, Halbert, 1996. "Information criteria for selecting possibly misspecified parametric models," Journal of Econometrics, Elsevier, vol. 71(1-2), pages 207-225.
    7. Zhao, L. C. & Krishnaiah, P. R. & Bai, Z. D., 1986. "On detection of the number of signals in presence of white noise," Journal of Multivariate Analysis, Elsevier, vol. 20(1), pages 1-25, October.
    8. Lwebel Arthur & Perraudin William, 1995. "A Theorem on Portfolio Separation with General Preferences," Journal of Economic Theory, Elsevier, vol. 65(2), pages 624-626, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Majid Al-Sadoon, 2014. "A General Theory of Rank Testing," Working Papers 750, Barcelona Graduate School of Economics.
    2. Bura, E. & Pfeiffer, R., 2008. "On the distribution of the left singular vectors of a random matrix and its applications," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2275-2280, October.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpem:0306008. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.