Advanced Search
MyIDEAS: Login to save this paper or follow this series

Plasticity, Evolvability and Modularity in RNA

Contents:

Author Info

  • Lauren W. Ancel
  • Walter Fontana
Registered author(s):

    Abstract

    RNA folding from sequences into secondary structures is a simple yet powerful, biophysically grounded model of a genotype-phenotype map in which concepts like plasticity, evolvability, epistasis and modularity not only can be precisely defined and statistically measured, but reveal simultaneous and profoundly non-independent effects of natural selection. Molecular plasticity is viewed here primarily as the capacity of an RNA sequence to assume a variety of energetically favorable shapes by equilibrating among them at constant temperature (microenvironmental plasticity). Through simulations based on experimental designs, we study the dynamics of a population of RNA molecules that evolve towards a predefined target shape. Each shape in the plastic repertoire of a sequence contributes to the overall fitness of the sequence in proportion to the time the sequence spends in that shape. Plasticity is costly, since the more shapes a sequence can assume, the less time it spends in any one of them. Unsurprisingly, selection leads to a reduction of plasticity (environmental canalization). The most striking observation, however, is the simultaneous slow-down and eventual halting of the evolutionary process. The reduction of plasticity entails genetic canalization, that is, a dramatic loss of variability (and hence a loss of evolvability) to the point of lock-in. The causal bridge between environmental canalization and genetic canalization is provided by a correlation between the set of shapes in the plastic repertoire of a sequence and the set of dominant (minimum free energy) shapes in its genetic neighborhood. This stastical property of the RNA genotype-phenotype map, which we call plastogenetic congruence, steers and then traps populations in regions where most genetic variation is phenotypically neutral. We call this phenomenon neutral confinement. Analytical models of neutral confinement, made tractable by the assumption of perfect plastogenetic congruence, formally connect mutation rate, the topography of phenotype space and evolvability. These models identify three mutational regimes: that corresponding to neutral confinement, a classic error threshold corresponding to the loss of the dominant phenotype, and an exploration threshold corresponding to a break-down of neutral confinement with the simultaneous persistence of the dominant phenotype. In a final step, we analyze the structural properties of canalized phenotypes. Surprisingly, the reduction of plasticity leads to an extreme modularity, which we define and analyze from several perspectives: thermophysical (melting behavior, the RNA version of a norm of reaction), kinetic (folding pathways, the RNA version of development), and genetic (transposability, the insensitivity of modular traits to changing genetic context). The model thereby suggests a possible evolutionary origin of modularity.

    Download Info

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below under "Related research" whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Bibliographic Info

    Paper provided by Santa Fe Institute in its series Working Papers with number 99-12-077.

    as in new window
    Length:
    Date of creation: Dec 1999
    Date of revision:
    Handle: RePEc:wop:safiwp:99-12-077

    Contact details of provider:
    Postal: 1399 Hyde Park Road, Santa Fe, New Mexico 87501
    Web page: http://www.santafe.edu/sfi/publications/working-papers.html
    More information through EDIRC

    Related research

    Keywords: Evolvability; plasticity; modularity; Baldwin-effect; exploration threshold; RNA secondary structure.;

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Christoph Flamm & Walter Fontana & Ivo L. Hofacker & Peter Schuster, 1999. "RNA Folding at Elementary Step Resolution," Working Papers 99-12-078, Santa Fe Institute.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:wop:safiwp:99-12-077. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.