Advanced Search
MyIDEAS: Login

Landscapes Complex Optimization Problems and Biopolymer Structures

Contents:

Author Info

  • Peter Schuster
  • Peter F. Stadler
Registered author(s):

    Abstract

    The evolution of RNA molecules in replication assays, viroids and RNA viruses can be viewed as an adaptation process on a ``fitness'' landscape. The dynamics of evolution is hence tightly linked to the structure of the underlying landscape. Global features of landscapes can be described by statistical measures like number of optima, lengths of walks, and correlation functions. The evolution of a quasispecies on such landscapes exhibits three dynamical regimes depending on the replication fidelity: Above the``localization threshold'' the population is centered around a (local) optimuim. Between localization and ``dispersion threshold'' the population is still centered around a consensus sequence, which, however, changes in time. For very large mutation rates the population spreads in squence space like a gas. The critical mutation rates separating the three domains depend strongly on characteristics properties of the fitness landscapes. Statistical characteristics of RNA landscapes are accesssibly by mathematical analysis and computer calculations on the level of secondary structures: these RNA landscapes belong to the same class as well known optimization problems and simple spin glass models. The notion of a landscapes is extended to combinatory maps, thereby allowing for a direct statistical investigation of the sequence structure relationships of RNA at the level of secondary structures. Frequencies of structures are highly non-uniform: we find relatively few common and many rare ones, as expressed by a generalized form of Zipf's law. Using an algorithm for inverse folding we show that sequences sharing the same structure are distributed randomly over sequence space. Together with calculations of structure correlations and a survey of neutral mutations this provides convincing evidence that RNA landscapes are as simple as they could possibly be for evolutionary adaptation: Any desired secondary structure can be found close to an arbitrary intitial sequence and at the same time almost all bases can be substituted sequentially without ever changing the shape of the molecule. Consequences of these results for the evolutionary optimization, the early stages of life, and molecular biotechnology are discussed.

    Download Info

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below under "Related research" whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Bibliographic Info

    Paper provided by Santa Fe Institute in its series Working Papers with number 93-11-069.

    as in new window
    Length:
    Date of creation: Nov 1993
    Date of revision:
    Handle: RePEc:wop:safiwp:93-11-069

    Contact details of provider:
    Postal: 1399 Hyde Park Road, Santa Fe, New Mexico 87501
    Web page: http://www.santafe.edu/sfi/publications/working-papers.html
    More information through EDIRC

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:wop:safiwp:93-11-069. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.