Advanced Search
MyIDEAS: Login

Almost All Graphs of Degree 4 are 3-colorable

Contents:

Author Info

  • Dimitris Achlioptas
  • Cristopher Moore
Registered author(s):

    Abstract

    The technique of approximating the mean path of Markov chains by differential equations has proved to be a useful tool in analyzing the performance of heuristics on random graph instances. However, only a small family of algorithms can currently be analyzed by this method, due to the need to maintain uniform randomness within the original state space. Here, we significantly expand the range of the differential equation technique, by showing how it can be generalized to handle heuristics that give priority to high- or low-degree vertices. In particular, we focus on 3-coloring and analyze a "smoothed" version of the practically successful Brelaz heuristic. This allows to prove that almost all graphs with average degree $d$, i.e. $G(n,p=d/n)$, are 3-colorable for $d \leq 4.03$, and that almost all 4-regular graphs are 3-colorable. This improves over the previous lower bound of $3.847$ on the 3-colorability threshold for $G(n,p=d/n)$ and gives the first non-trivial result on the colorability of random regular graphs. In fact, our methods can be used to deal with "arbitrary" sparse degree distributions and in conjunction with general graph algorithms that have a preference for high- or low-degree vertices.

    Download Info

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below under "Related research" whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Bibliographic Info

    Paper provided by Santa Fe Institute in its series Working Papers with number 01-11-070.

    as in new window
    Length:
    Date of creation: Nov 2001
    Date of revision:
    Handle: RePEc:wop:safiwp:01-11-070

    Contact details of provider:
    Postal: 1399 Hyde Park Road, Santa Fe, New Mexico 87501
    Web page: http://www.santafe.edu/sfi/publications/working-papers.html
    More information through EDIRC

    Related research

    Keywords: Random graphs; graph coloring; analysis of algorithms; computational complexity; heuristics; phase transitions in NP-complete problems;

    This paper has been announced in the following NEP Reports:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:wop:safiwp:01-11-070. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.