Advanced Search
MyIDEAS: Login

Quantum Walks on the Hypercube

Contents:

Author Info

  • Cristopher Moore
  • Alexander Russell
Registered author(s):

    Abstract

    Recently, it has been shown that one-dimensional quantum walks can mix more quickly than classical random walks, suggesting that quantum Monte Carlo algorithms can outperform their classical counterparts. We study two quantum walks on the n-dimensional hypercube, one in discrete time and one in continuous time. In both cases we show that the quantum walk mixes in (pi/4)n steps, faster than the O(n log n) steps required by the classical walk. In the continuous-time case, the probability distribution is exactly uniform at this time. More importantly, these walks expose several subtleties in the definition of mixing time for quantum walks. Even though the continuous-time walk has an O(n) instantaneous mixing time at which it is precisely uniform, it never approaches the uniform distribution when the stopping time is chosen randomly as in [AharonovAKV2001]. Our analysis treats interference between terms of different phase more carefully than is necessary for the walk on the cycle; previous general bounds predict an exponential, rather than linear, mixing time for the hypercube.

    Download Info

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below under "Related research" whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Bibliographic Info

    Paper provided by Santa Fe Institute in its series Working Papers with number 01-05-026.

    as in new window
    Length:
    Date of creation: May 2001
    Date of revision:
    Handle: RePEc:wop:safiwp:01-05-026

    Contact details of provider:
    Postal: 1399 Hyde Park Road, Santa Fe, New Mexico 87501
    Web page: http://www.santafe.edu/sfi/publications/working-papers.html
    More information through EDIRC

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:wop:safiwp:01-05-026. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Thomas Krichel).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.