Advanced Search
MyIDEAS: Login to save this paper or follow this series

Simulation of urban system evolution in a synergetic modelling framework. The case of Attica, Greece

Contents:

Author Info

  • Yorgos N. Photis

    ()

  • Panos Manetos

    ()

Abstract

Spatial analysis and evolution simulation of such complex and dynamic systems as modern urban areas could greatly benefit from the synergy of methods and techniques that constitute the core of the fields of Information Technology and Artificial Intelligence. Additionally, if during the decision making process, a consistent methodology is applied and assisted by a user-friendly interface, premium and pragmatic solution strategies can be tested and evaluated. In such a framework, this paper presents both a prototype Decision Support System and a consorting spatio-temporal methodology, for modelling urban growth. Its main focus is on the analysis of current trends, the detection of the factors that mostly affect the evolution process and the examination of user-defined hypotheses regarding future states of the problem environment. According to the approach, a neural network model is formulated for a specific time intervals and each different group of spatial units, mainly based to the degree of their contiguity and spatial interaction. At this stage, fuzzy logic provides a precise image of spatial entities, further exploited in a twofold way. First, for the analysis and interpretation of up-to-date urban evolution and second, for the formulation of a robust spatial simulation model. It should be stressed, however, that the neural network model is not solely used to define future urban images, but also to evaluate the degree of influence that each variable as a significant of problem parameter, contributes to the final result. Thus, the formulation and the analysis of alternative planning scenarios are assisted. Both the proposed methodological framework and the prototype Decision Support System are utilized during the study of Attica, Greece?s principal prefecture and the definition of a twenty-year forecast. The variables considered and projected refer to population data derived from the 1961-1991 censuses and building uses aggregated in ten different categories. The final results are visualised through thematic maps in a GIS environment. Finally, the performance of the methodology is evaluated as well as directions for further improvements and enhancements are outlined. Keywords: Computational geography, Spatial modelling, Neural network models, Fuzzy logic.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www-sre.wu-wien.ac.at/ersa/ersaconfs/ersa03/cdrom/papers/353.pdf
Download Restriction: no

Bibliographic Info

Paper provided by European Regional Science Association in its series ERSA conference papers with number ersa03p353.

as in new window
Length:
Date of creation: Aug 2003
Date of revision:
Handle: RePEc:wiw:wiwrsa:ersa03p353

Contact details of provider:
Postal: Welthandelsplatz 1, 1020 Vienna, Austria
Web page: http://www.ersa.org

Related research

Keywords:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa03p353. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Gunther Maier).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.