IDEAS home Printed from https://ideas.repec.org/p/wiw/wiwrsa/ersa02p141.html
   My bibliography  Save this paper

Space-time modeling of traffic flow

Author

Listed:
  • Kamarianakis, Yiannis
  • Prastacos, Poulicos

Abstract

A key concern in transportation planning and traffic management is the ability to forecast traffic flows on a street network. Traffic flows forecasts can be transformed to obtain travel time estimates and then use these as input to travel demand models, dynamic route guidance and congestion management procedures. A variety of mathematical techniques have been proposed for modeling traffic flow on a street network. Briefly, the most widely used theories are: -Kinetic models based on partial differential equations that describe waves of different traffic densities, -deterministic models that use nonlinear equations for the estimation of different car routes, -large scale simulation models such as cellular automata and, -stochastic modeling of traffic density at distinct points in space. One problem with these approaches is that the traffic flow process is characterized by nonstationarities that cannot be taken into account by the vast majority of modeling strategies. However, recent advances in statistical modeling in fields such as econometrics or environmetrics enable us to overcome this problem. The aim of this work is to present how two statistical techniques, namely, vector autoregressive modeling and dynamic space-time modeling can be used to develop efficient and reliable forecasts of traffic flow. The former approach is encountered in the econometrics literature, whereas the later is mostly used in environmetrics. Recent advances in statistical methodology provide powerful tools for traffic flow description and forecasting. For a purely statistical approach to travel time prediction one may consult Rice and van Zwet (2002). In this work, the authors employ a time varying coefficients regression technique that can be easily implemented computationally, but is sensitive to nonstationarities and does not take into account traffic flow information from neighboring points in the network that can significantly improve forecasts. According to our approach, traffic flow measurements, that is count of vehicles and road occupancy obtained at constants time intervals through loop detectors located at various distinct points of a road network, form a multiple time series set. This set can be described by a vector autoregressive process that models each series as a linear combination of past observations of some (optimally selected) components of the vector; in our case the vector is comprised by the different measurement points of traffic flow. For a thorough technical discussion on vector autoregressive processes we refer to Lutkerpohl (1987), whereas a number of applications can be found in Ooms (1994). Nowadays, these models are easily implemented in commercial software like SAS or MATLAB; see for example LeSage (1999). The spatial distribution of the measurement locations and their neighboring relations cannot be incorporated in a vector autoregressive model. However, accounting for this information may optimize model fitting and provide insight into spatial correlation structures that evolve through time. This can be accomplished by applying space-time modeling techniques. The main difference of space-time models encountered in literature with the vector autoregressive ones lies in the inclusion of a weight matrix that defines the neighboring relations and places the appropriate restrictions. For some early references on space-time models, one could consult Pfeifer and Deutsch (1980 a,b); for a Bayesian approach, insensitive to nonstationarities we refer to Wikle, Berliner and Cressie (1998). In this work, we discuss how the space-time methodology can be implemented to traffic flow modeling. The aforementioned modeling strategies are applied in a subset of traffic flow measurements collected every 15 minutes through loop detectors at 74 locations in the city of Athens. A comparative study in terms of model fitting and forecasting accuracy is performed. Univariate time series models are also fitted in each measurement location in order to investigate the relation between a model's dimension and performance. References: LeSage J. P. (1999). Applied Econometrics using MATLAB. Manuscript, Dept. of Economics, University of Toronto Lutkerpohl H. (1987). Forecasting Aggregated Vector ARMA Processes. Lecture Notes in Economics and Mathematical Systems. Springer Verlag Berlin Heidelberg Ooms M. (1994). Empirical Vector Autoregressive Modeling. Springer Verlag Berlin Heidelberg Pfeifer P. E., and Deutsch S. J. (1980a). A three-stage iterative procedure for Space-Time Modeling. Technometrics, 22, 35-47 Pfeifer P. E., and Deutsch S. J. (1980b). Identification and Interpretation of First-Order Space-Time ARMA models. Technometrics, 22, 397-408 Rice J., and van Zwet E. (2002). A simple and effective method for predicting travel times on freeways. Manuscript, Dept. of Statistics, University of California at Berkeley Wikle C. K., Berliner L. M. and Cressie N. (1998). Hierarchical Bayesian space-time models. Environmental and Ecological Statistics, 5, 117-154

Suggested Citation

  • Kamarianakis, Yiannis & Prastacos, Poulicos, 2002. "Space-time modeling of traffic flow," ERSA conference papers ersa02p141, European Regional Science Association.
  • Handle: RePEc:wiw:wiwrsa:ersa02p141
    as

    Download full text from publisher

    File URL: https://www-sre.wu.ac.at/ersa/ersaconfs/ersa02/cd-rom/papers/141.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Whittaker, Joe & Garside, Simon & Lindveld, Karel, 1997. "Tracking and predicting a network traffic process," International Journal of Forecasting, Elsevier, vol. 13(1), pages 51-61, March.
    2. Elhorst, J.P., 2000. "Dynamic models in space and time," Research Report 00C16, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    3. Giacomini, Raffaella & Granger, Clive W. J., 2004. "Aggregation of space-time processes," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
    4. repec:dgr:rugsom:00c16 is not listed on IDEAS
    5. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alyse K. Winchester & Ryan A. Peterson & Ellison Carter & Mary D. Sammel, 2021. "Impact of COVID-19 Social Distancing Policies on Traffic Congestion, Mobility, and NO 2 Pollution," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
    2. Peer, Stefanie & Knockaert, Jasper & Koster, Paul & Tseng, Yin-Yen & Verhoef, Erik T., 2013. "Door-to-door travel times in RP departure time choice models: An approximation method using GPS data," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 134-150.
    3. Min Deng & Wentao Yang & Qiliang Liu & Yunfei Zhang, 2017. "A divide-and-conquer method for space–time series prediction," Journal of Geographical Systems, Springer, vol. 19(1), pages 1-19, January.
    4. Shanjiang Zhu & David Levinson, 2011. "A Portfolio Theory of Route Choice," Working Papers 000096, University of Minnesota: Nexus Research Group.
    5. Paravantis, John & Sambracos, Evangelos & Ntanos, Stamatios, 2008. "Energy Consumption and Carbon Dioxide Emissions of a Suburban Coastal Transport System," MPRA Paper 66438, University Library of Munich, Germany.
    6. Gehman, Andrew & Wei, William W.S., 2020. "Optimal spatial aggregation of space–time models and applications," Computational Statistics & Data Analysis, Elsevier, vol. 145(C).
    7. Yiannis Kamarianakis & Poulicos Prastacos, 2006. "Spatial Time-Series Modeling: A review of the proposed methodologies," Working Papers 0604, University of Crete, Department of Economics.
    8. Junseo Bae & Kunhee Choi, 2021. "A land-use clustering approach to capturing the level-of-service of large urban corridors: A case study in downtown Los Angeles," Environment and Planning B, , vol. 48(7), pages 2093-2109, September.
    9. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    10. Yang, Yang & Zhang, Honglei, 2019. "Spatial-temporal forecasting of tourism demand," Annals of Tourism Research, Elsevier, vol. 75(C), pages 106-119.
    11. Yanmin Qi & Zuduo Zheng & Dongyao Jia, 2020. "Exploring the Spatial-Temporal Relationship between Rainfall and Traffic Flow: A Case Study of Brisbane, Australia," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    12. Tao Cheng & James Haworth & Jiaqiu Wang, 2012. "Spatio-temporal autocorrelation of road network data," Journal of Geographical Systems, Springer, vol. 14(4), pages 389-413, October.
    13. Yiannis Kamarianakis, 2006. "Hierarchical Bayesian Modeling For Spatial Time Series: An Alternative Approach To Spatial Sur," Working Papers 0605, University of Crete, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Emeka Nkoro & Aham Kelvin Uko, 2016. "Exchange Rate and Inflation Volatility and Stock Prices Volatility: Evidence from Nigeria, 1986-2012," Journal of Applied Finance & Banking, SCIENPRESS Ltd, vol. 6(6), pages 1-4.
    3. Czujack, Corinna & Flôres Junior, Renato Galvão & Ginsburgh, Victor, 1995. "On long-run price comovements between paintings and prints," FGV EPGE Economics Working Papers (Ensaios Economicos da EPGE) 269, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil).
    4. Sotirios Varelas, 2022. "Virtual Immersive Platforms as a Strategic Innovative Destination Marketing Tool in the COVID-19 Era," Sustainability, MDPI, vol. 14(19), pages 1-15, October.
    5. Loperfido, Nicola, 2010. "A note on marginal and conditional independence," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1695-1699, December.
    6. Hyunsoo Kang, 2022. "Impacts of Income Inequality and Economic Growth on CO 2 Emissions: Comparing the Gini Coefficient and the Top Income Share in OECD Countries," Energies, MDPI, vol. 15(19), pages 1-15, September.
    7. KAMKOUM, Arnaud Cedric, 2023. "The Federal Reserve’s Response to the Global Financial Crisis and its Effects: An Interrupted Time-Series Analysis of the Impact of its Quantitative Easing Programs," Thesis Commons d7pvg, Center for Open Science.
    8. Bierens, H.J. & Broersma, L., 1991. "The relation between unemployment and interest rate : some international evidence," Serie Research Memoranda 0112, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    9. Zamani, Mehrzad, 2007. "Energy consumption and economic activities in Iran," Energy Economics, Elsevier, vol. 29(6), pages 1135-1140, November.
    10. Jumah, Adusei & Kunst, Robert M., 2001. "The Effects of Exchange-Rate Exposures on Equity Asset Markets," Economics Series 94, Institute for Advanced Studies.
    11. Muhammad Shafiullah & Ravinthirakumaran Navaratnam, 2016. "Do Bangladesh and Sri Lanka Enjoy Export-Led Growth? A Comparison of Two Small South Asian Economies," South Asia Economic Journal, Institute of Policy Studies of Sri Lanka, vol. 17(1), pages 114-132, March.
    12. Portes, Richard & Santorum, Anita, 1987. "Money and the consumption goods market in China," Journal of Comparative Economics, Elsevier, vol. 11(3), pages 354-371, September.
    13. Alberto Fuertes & Simón Sosvilla-Rivero, 2019. "“Forecasting emerging market currencies: Are inflation expectations useful?”," IREA Working Papers 201918, University of Barcelona, Research Institute of Applied Economics, revised Oct 2019.
    14. Diana Ricciulli-Marín, 2020. "The Fiscal Cost of Conflict: Evidence from La Violencia in Colombia," Cuadernos de Historia Económica 53, Banco de la Republica de Colombia.
    15. Wesam Salah Alaloul & Muhammad Ali Musarat & Muhammad Babar Ali Rabbani & Qaiser Iqbal & Ahsen Maqsoom & Waqas Farooq, 2021. "Construction Sector Contribution to Economic Stability: Malaysian GDP Distribution," Sustainability, MDPI, vol. 13(9), pages 1-26, April.
    16. Xiaojie Xu, 2017. "The rolling causal structure between the Chinese stock index and futures," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(4), pages 491-509, November.
    17. Hany Eldemerdash & Hugh Metcalf & Sara Maioli, 2014. "Twin deficits: new evidence from a developing (oil vs. non-oil) countries’ perspective," Empirical Economics, Springer, vol. 47(3), pages 825-851, November.
    18. Olivier Damette & Stéphane Goutte, 2021. "Weather, Pollution, and Covid-19 Spread: A Time Series and Wavelet Reassessment," Springer Books, in: Fateh Belaïd & Anna Cretì (ed.), Energy Transition, Climate Change, and COVID-19, pages 95-106, Springer.
    19. Ibrahim Ari & Muammer Koc, 2018. "Sustainable Financing for Sustainable Development: Understanding the Interrelations between Public Investment and Sovereign Debt," Sustainability, MDPI, vol. 10(11), pages 1-25, October.
    20. H. Gonca DÝLER & F.Çiðdem TARHAN, 2015. "The Relationship Between Current Account Deficit Budget Deficit: A Research On Turkey," Eurasian Business & Economics Journal, Eurasian Academy Of Sciences, vol. 2(2), pages 24-36, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wiw:wiwrsa:ersa02p141. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Gunther Maier (email available below). General contact details of provider: http://www.ersa.org .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.