Advanced Search
MyIDEAS: Login to save this paper or follow this series

An Empirical Characteristic Function Approach to VaR under a Mixture of Normal Distribution with Time-Varying Volatility

Contents:

Author Info

  • Dinghai Xu

    (Department of Economics, University of Waterloo)

  • Tony S. Wirjanto

    (Department of Economics, University of Waterloo)

Abstract

This paper considers Value at Risk measures constructed under a discrete mixture of normal distribution on the innovations with time-varying volatility, or MN-GARCH, model. We adopt an approach based on the continuous empirical characteristic function to estimate the param eters of the model using several daily foreign exchange rates' return data. This approach has several advantages as a method for estimating the MN-GARCH model. In particular, under certain weighting measures, a closed form objective distance function for estimation is obtained. This reduces the computational burden considerably. In addition, the characteristic function, unlike its likelihood function counterpart, is always uniformly bounded over parameter space due to the Fourier transformation. To evaluate the VaR estimates obtained from alternative specifications, we construct several measures, such as the number of violations, the average size of violations, the sum square of violations and the expected size of violations. Based on these measures, we find that the VaR measures obtained from the MN-GARCH model outperform those obtained from other competing models.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://economics.uwaterloo.ca/documents/Xu-mn-garch-var.pdf
Download Restriction: no

Bibliographic Info

Paper provided by University of Waterloo, Department of Economics in its series Working Papers with number 08008.

as in new window
Length:
Date of creation: Dec 2008
Date of revision:
Handle: RePEc:wat:wpaper:08008

Contact details of provider:
Postal: Waterloo, Ontario, N2L 3G1
Phone: (519) 888-4567 ext 33695
Fax: (519) 725-0530
Web page: http://economics.uwaterloo.ca/
More information through EDIRC

Related research

Keywords: Value at Risk; Mixture of Normals; GARCH; Characteristic Function.;

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Bai, Xuezheng & Russell, Jeffrey R. & Tiao, George C., 2003. "Kurtosis of GARCH and stochastic volatility models with non-normal innovations," Journal of Econometrics, Elsevier, vol. 114(2), pages 349-360, June.
  2. Knight, John L. & Yu, Jun, 2002. "Empirical Characteristic Function In Time Series Estimation," Econometric Theory, Cambridge University Press, vol. 18(03), pages 691-721, June.
  3. Bauwens, L. & Bos, C.S. & van Dijk, H.K., 1999. "Adaptive Polar Sampling with an Application to a Bayes Measure of Value-at-Risk," Econometric Institute Research Papers TI 99-082/4, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
  4. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  5. Markus Haas, 2004. "Mixed Normal Conditional Heteroskedasticity," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 2(2), pages 211-250.
  6. Gray, Stephen F., 1996. "Modeling the conditional distribution of interest rates as a regime-switching process," Journal of Financial Economics, Elsevier, vol. 42(1), pages 27-62, September.
  7. Jose A. Lopez, 1998. "Methods for evaluating value-at-risk estimates," Economic Policy Review, Federal Reserve Bank of New York, issue Oct, pages 119-124.
  8. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
  9. Christoffersen, Peter F, 1998. "Evaluating Interval Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 841-62, November.
  10. Vlaar, Peter J G & Palm, Franz C, 1993. "The Message in Weekly Exchange Rates in the European Monetary System: Mean Reversion, Conditional Heteroscedasticity, and Jumps," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(3), pages 351-60, July.
  11. Schwert, G William, 1989. " Why Does Stock Market Volatility Change over Time?," Journal of Finance, American Finance Association, vol. 44(5), pages 1115-53, December.
  12. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  13. Franc Klaassen, 2002. "Improving GARCH volatility forecasts with regime-switching GARCH," Empirical Economics, Springer, vol. 27(2), pages 363-394.
  14. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  15. repec:fth:louvco:9957 is not listed on IDEAS
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Dinghai Xu, 2009. "The Applications of Mixtures of Normal Distributions in Empirical Finance: A Selected Survey," Working Papers 0904, University of Waterloo, Department of Economics, revised Sep 2009.
  2. Tony S. Wirjanto & Adam W. Kolkiewicz & Zhongxian Men, 2013. "Stochastic Conditional Duration Models with Mixture Processes," Working Paper Series 29_13, The Rimini Centre for Economic Analysis.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:wat:wpaper:08008. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Pat Gruber).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.