IDEAS home Printed from https://ideas.repec.org/p/vnm/wpaper/183.html
   My bibliography  Save this paper

Multivariate dependence modeling using copulas

Author

Listed:
  • Marta Cardin

    (Department of Applied Mathematics, University of Venice)

  • Maddalena Manzi

    (Department of Mathematics, University of Padua)

Abstract

There exist necessary and sufficient conditions on the generating functions of the FGM family, in order to obtain various dependence properties. We present multivariate generalizations of this class studying symmetry and dependence concepts, measuring the dependence among the components of each class and providing several examples.

Suggested Citation

  • Marta Cardin & Maddalena Manzi, 2008. "Multivariate dependence modeling using copulas," Working Papers 183, Department of Applied Mathematics, Università Ca' Foscari Venezia.
  • Handle: RePEc:vnm:wpaper:183
    as

    Download full text from publisher

    File URL: http://virgo.unive.it/wpideas/storage/2008wp183.pdf
    File Function: First version, 2008
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Matthias Fischer & Ingo Klein, 2007. "Constructing Generalized FGM Copulas by Means of Certain Univariate Distributions," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 65(2), pages 243-260, February.
    2. M. Taylor, 2007. "Multivariate measures of concordance," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 789-806, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koen Decancq, 2020. "Measuring cumulative deprivation and affluence based on the diagonal dependence diagram," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 103-117, August.
    2. Koen Decancq, 2014. "Copula-based measurement of dependence between dimensions of well-being," Oxford Economic Papers, Oxford University Press, vol. 66(3), pages 681-701.
    3. Dalia Valencia & Rosa E. Lillo & Juan Romo, 2019. "A Kendall correlation coefficient between functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(4), pages 1083-1103, December.
    4. Roger Nelsen & Manuel Úbeda-Flores, 2012. "Directional dependence in multivariate distributions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(3), pages 677-685, June.
    5. Cécile Amblard & Stéphane Girard, 2009. "A new extension of bivariate FGM copulas," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 70(1), pages 1-17, June.
    6. Ferreira Helena & Ferreira Marta, 2020. "Multivariate medial correlation with applications," Dependence Modeling, De Gruyter, vol. 8(1), pages 361-372, January.
    7. Ferreira Helena & Ferreira Marta, 2020. "Multivariate medial correlation with applications," Dependence Modeling, De Gruyter, vol. 8(1), pages 361-372, January.
    8. Gaißer, Sandra & Ruppert, Martin & Schmid, Friedrich, 2010. "A multivariate version of Hoeffding's Phi-Square," Journal of Multivariate Analysis, Elsevier, vol. 101(10), pages 2571-2586, November.
    9. Cui, Hengxin & Tan, Ken Seng & Yang, Fan & Zhou, Chen, 2022. "Asymptotic analysis of portfolio diversification," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 302-325.
    10. Mao, Tiantian & Yang, Fan, 2015. "Risk concentration based on Expectiles for extreme risks under FGM copula," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 429-439.
    11. Bairamov, I. & Bayramoglu, K., 2013. "From the Huang–Kotz FGM distribution to Baker’s bivariate distribution," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 106-115.
    12. César García‐Gómez & Ana Pérez & Mercedes Prieto‐Alaiz, 2021. "Copula‐based analysis of multivariate dependence patterns between dimensions of poverty in Europe," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 67(1), pages 165-195, March.
    13. Silvia Terzi & Luca Moroni, 2022. "Local Concordance and Some Applications," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 161(2), pages 457-470, June.
    14. Silvia Terzi & Luca Moroni, 2014. "A suggestion for a multivariate concordance coefficient," Departmental Working Papers of Economics - University 'Roma Tre' 0189, Department of Economics - University Roma Tre.
    15. Valencia García, Dalia Jazmin & Lillo Rodríguez, Rosa Elvira & Romo, Juan, 2013. "A Kendall correlation coefficient for functional dependence," DES - Working Papers. Statistics and Econometrics. WS ws133228, Universidad Carlos III de Madrid. Departamento de Estadística.
    16. José Rodríguez-Lallena & Manuel Úbeda-Flores, 2010. "Multivariate copulas with quadratic sections in one variable," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 72(3), pages 331-349, November.
    17. Yuri Salazar Flores & Adán Díaz-Hernández, 2022. "The General Tail Dependence Function in the Marshall-Olkin and Other Parametric Copula Models with an Application to Financial Time Series," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 146-187, May.
    18. Jorge Navarro & Pedro Hernandez, 2008. "Mean residual life functions of finite mixtures, order statistics and coherent systems," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 67(3), pages 277-298, April.
    19. Mhamed Mesfioui & Julien Trufin, 2022. "Bounds on Multivariate Kendall’s Tau and Spearman’s Rho for Zero-Inflated Continuous Variables and their Application to Insurance," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1051-1059, June.
    20. R. D. Baker & I. G. McHale, 2009. "Modelling the probability distribution of prize winnings in the UK National Lottery: consequences of conscious selection," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(4), pages 813-834, October.

    More about this item

    Keywords

    copula; density function; FGM copulas; dependence; symmetry;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vnm:wpaper:183. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marco LiCalzi (email available below). General contact details of provider: https://edirc.repec.org/data/dmvenit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.