Advanced Search
MyIDEAS: Login to save this paper or follow this series

The Singularity of the Information Matrix of the Mixed Proportional Hazard Model

Contents:

Author Info

Abstract

Elbers and Ridder (1982) identify the Mixed Proportional Hazard model by assuming that the heterogeneity has finite mean. Under this assumption, the information matrix of the MPH model may be singular. Moreover, the finite mean assumption cannot be tested. This paper proposes a new identification condition that ensures non-singularity of the information bound. This implies that there can exist estimators that converge at rate root N. As an illustration, we apply our identifying assumption to the Transformation model of Horowitz (1996). In particular, we assume that the baseline hazard is constant near t=0 but make no no parametric assumptions are imposed for other values of t. We then derive an estimator for the scale normalization that converges at rate root N.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://economics.uwo.ca/research/department_working_papers_docs/wp2002/wp2002_6.pdf
Our checks indicate that this address may not be valid because: 404 Not Found. If this is indeed the case, please notify ()
Download Restriction: no

Bibliographic Info

Paper provided by University of Western Ontario, Department of Economics in its series UWO Department of Economics Working Papers with number 20026.

as in new window
Length:
Date of creation: Jul 2002
Date of revision:
Handle: RePEc:uwo:uwowop:20026

Contact details of provider:
Postal: Department of Economics, Reference Centre, Social Science Centre, University of Western Ontario, London, Ontario, Canada N6A 5C2
Phone: 519-661-2111 Ext.85244
Web page: http://economics.uwo.ca/research/research_papers/department_working_papers.html

Related research

Keywords:

Other versions of this item:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Bo E. Honor & �ureo De Paula, 2010. "Interdependent Durations," Review of Economic Studies, Oxford University Press, vol. 77(3), pages 1138-1163.
  2. Tiemen Woutersen & Jerry Hausman, 2005. "Estimating a Semi-Parametric Duration Model without Specifying Heterogeneity," Economics Working Paper Archive 525, The Johns Hopkins University,Department of Economics.
  3. Hausman, Jerry A. & Woutersen, Tiemen, 2014. "Estimating a semi-parametric duration model without specifying heterogeneity," Journal of Econometrics, Elsevier, vol. 178(P1), pages 114-131.
  4. Bo E. Honoré & Aureo de Paula, 2009. ""Interdependent Durations" Third Version," PIER Working Paper Archive 09-039, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Feb 2008.
  5. Bo E. Honore & Aureo de Paula, 2007. "Interdependent Durations, Second Version," PIER Working Paper Archive 08-044, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 01 Nov 2008.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:uwo:uwowop:20026. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.