IDEAS home Printed from https://ideas.repec.org/p/uts/rpaper/60.html
   My bibliography  Save this paper

Benchmark Pricing of Credit Derivatives Under a Standard Market Model

Author

Listed:

Abstract

This paper makes use of an integrated benchmark modelling framework that allows us to model credit risk. We demonstrate how to price contingent claims by taking expectations under the real world probability measure in a benchmarked world. Furthermore, put and call options on an index are studied that measure the credit worthiness of a firm.

Suggested Citation

  • Mark Craddock & Eckhard Platen, 2001. "Benchmark Pricing of Credit Derivatives Under a Standard Market Model," Research Paper Series 60, Quantitative Finance Research Centre, University of Technology, Sydney.
  • Handle: RePEc:uts:rpaper:60
    as

    Download full text from publisher

    File URL: http://www.qfrc.uts.edu.au/research/research_papers/rp60.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Merton, Robert C., 1977. "On the pricing of contingent claims and the Modigliani-Miller theorem," Journal of Financial Economics, Elsevier, vol. 5(2), pages 241-249, November.
    2. Robert A. Jarrow & David Lando & Stuart M. Turnbull, 2008. "A Markov Model for the Term Structure of Credit Risk Spreads," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 18, pages 411-453, World Scientific Publishing Co. Pte. Ltd..
    3. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    5. Lara Cathcart & Lina El-Jahel, 2006. "Pricing defaultable bonds: a middle-way approach between structural and reduced-form models," Quantitative Finance, Taylor & Francis Journals, vol. 6(3), pages 243-253.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alain Monfort & Jean-Paul Renne, 2013. "Default, Liquidity, and Crises: an Econometric Framework," The Journal of Financial Econometrics, Society for Financial Econometrics, vol. 11(2), pages 221-262, March.
    2. Hamerle, Alfred & Liebig, Thilo & Rösch, Daniel, 2003. "Credit Risk Factor Modeling and the Basel II IRB Approach," Discussion Paper Series 2: Banking and Financial Studies 2003,02, Deutsche Bundesbank.
    3. Bhanu Pratap Singh Thakur & M. Kannadhasan & Vinay Goyal, 2018. "Determinants of corporate credit spread: evidence from India," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 45(1), pages 59-73, March.
    4. Wolter, Marcus & Rösch, Daniel, 2014. "Cure events in default prediction," European Journal of Operational Research, Elsevier, vol. 238(3), pages 846-857.
    5. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742, Decembrie.
    6. Chava, Sudheer & Jarrow, Robert, 2008. "Modeling loan commitments," Finance Research Letters, Elsevier, vol. 5(1), pages 11-20, March.
    7. Augusto Castillo, 2004. "Firm and Corporate Bond Valuation: A Simulation Dynamic Programming Approach," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 41(124), pages 345-360.
    8. Nusrat Jahan, 2022. "Macroeconomic Determinants of Corporate Credit Spreads: Evidence from Canada," Carleton Economic Papers 22-07, Carleton University, Department of Economics.
    9. Nan Chen & S. G. Kou, 2009. "Credit Spreads, Optimal Capital Structure, And Implied Volatility With Endogenous Default And Jump Risk," Mathematical Finance, Wiley Blackwell, vol. 19(3), pages 343-378, July.
    10. Michael C. Munnix & Rudi Schafer & Thomas Guhr, 2011. "A Random Matrix Approach to Credit Risk," Papers 1102.3900, arXiv.org, revised Jun 2011.
    11. Wisniewski, Tomasz Piotr & Lambe, Brendan John, 2015. "Does economic policy uncertainty drive CDS spreads?," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 447-458.
    12. Chen, An-Sing & Chu, Hsiang-Hui & Hung, Pi-Hsia & Cheng, Miao-Sih, 2020. "Financial risk and acquirers' stockholder wealth in mergers and acquisitions," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    13. Zhou, Chunsheng, 2001. "The term structure of credit spreads with jump risk," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 2015-2040, November.
    14. Edward J. Elton & Martin J. Gruber & Deepak Agrawal & Christopher Mann, 1999. "Explaining the Rate Spread on Corporate Bonds," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-082, New York University, Leonard N. Stern School of Business-.
    15. Giesecke, Kay & Longstaff, Francis A. & Schaefer, Stephen & Strebulaev, Ilya, 2011. "Corporate bond default risk: A 150-year perspective," Journal of Financial Economics, Elsevier, vol. 102(2), pages 233-250.
    16. Hamerle, Alfred & Knapp, Michael & Wildenauer, Nicole, 2005. "Auswirkungen unterschiedlicher Assetkorrelationen in Mehr-Sektoren-Kreditportfoliomodellen," University of Regensburg Working Papers in Business, Economics and Management Information Systems 409, University of Regensburg, Department of Economics.
    17. Jobst, Norbert J. & Zenios, Stavros A., 2005. "On the simulation of portfolios of interest rate and credit risk sensitive securities," European Journal of Operational Research, Elsevier, vol. 161(2), pages 298-324, March.
    18. Bystrom, Hans & Kwon, Oh Kang, 2007. "A simple continuous measure of credit risk," International Review of Financial Analysis, Elsevier, vol. 16(5), pages 508-523.
    19. Duffie, Darrell, 2005. "Credit risk modeling with affine processes," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2751-2802, November.
    20. Chiarella, Carl & Fanelli, Viviana & Musti, Silvana, 2011. "Modelling the evolution of credit spreads using the Cox process within the HJM framework: A CDS option pricing model," European Journal of Operational Research, Elsevier, vol. 208(2), pages 95-108, January.

    More about this item

    Keywords

    credit risk; benchmark pricing; credit derivatives; credit spreads;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:60. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Duncan Ford (email available below). General contact details of provider: https://edirc.repec.org/data/qfutsau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.