Advanced Search
MyIDEAS: Login to save this paper or follow this series

Classes of Interest Rate Models Under the HJM Framework

Contents:

Author Info

Abstract

Although the HJM term structure model is widely accepted as the most general and perhaps the most consistent, framework under which to study interest rate derivatives, the earlier models of Vasicek, Cox-Ingersoll-Ross, Hull-White, and Black-Karasinki remain popuar among both academics and practitioners. It is often stated that these models are special cases of the HJM framework, but the precise links have not been fully established in the literature. By beginning with certain forward rate volatility processes, it is possible to obtain classes of interest model under the HJM framework that closely resemble the traditional models listed above. Further, greater insight into the dyanmics of the interest rate process emerges as a result of natural links being established between the model parameters and maret observed variables.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.business.uts.edu.au/qfrc/research/research_papers/rp13.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Quantitative Finance Research Centre, University of Technology, Sydney in its series Research Paper Series with number 13.

as in new window
Length:
Date of creation: 01 Aug 1999
Date of revision:
Handle: RePEc:uts:rpaper:13

Contact details of provider:
Postal: PO Box 123, Broadway, NSW 2007, Australia
Phone: +61 2 9514 7777
Fax: +61 2 9514 7711
Web page: http://www.qfrc.uts.edu.au/
More information through EDIRC

Related research

Keywords:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Peter Ritchken & L. Sankarasubramanian, 1995. "Volatility Structures Of Forward Rates And The Dynamics Of The Term Structure," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 55-72.
  2. M. Rutkowski, 1996. "Valuation and hedging of contingent claims in the HJM model with deterministic volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 3(3), pages 237-267.
  3. Heath, David & Jarrow, Robert & Morton, Andrew, 1992. "Bond Pricing and the Term Structure of Interest Rates: A New Methodology for Contingent Claims Valuation," Econometrica, Econometric Society, vol. 60(1), pages 77-105, January.
  4. Inui, Koji & Kijima, Masaaki, 1998. "A Markovian Framework in Multi-Factor Heath-Jarrow-Morton Models," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 33(03), pages 423-440, September.
  5. Ram Bhar & Carl Chiarella, 1995. "Transformation of Heath-Jarrow-Morton Models to Markovian Systems," Working Paper Series 53, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Andrew Matacz & Jean-Philippe Bouchaud, 1999. "An empirical investigation of the forward interest rate term structure," Science & Finance (CFM) working paper archive 500047, Science & Finance, Capital Fund Management.
  2. Antje Berndt & Peter Ritchken & Zhiqiang Sun, . "On Correlation Effects and Default Clustering in Credit Models," GSIA Working Papers 2008-E36, Carnegie Mellon University, Tepper School of Business.
  3. Ballotta, Laura & Haberman, Steven, 2003. "Valuation of guaranteed annuity conversion options," Insurance: Mathematics and Economics, Elsevier, vol. 33(1), pages 87-108, August.
  4. Andrew Matacz & Jean-Philippe Bouchaud, 1999. "Explaining the forward interest rate term structure," Science & Finance (CFM) working paper archive 500046, Science & Finance, Capital Fund Management.
  5. Carl Chiarella & Samuel Chege Maina & Christina Nikitopoulos-Sklibosios, 2010. "Markovian Defaultable HJM Term Structure Models with Unspanned Stochastic Volatility," Research Paper Series 283, Quantitative Finance Research Centre, University of Technology, Sydney.
  6. Ballotta, Laura & Haberman, Steven, 2006. "The fair valuation problem of guaranteed annuity options: The stochastic mortality environment case," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 195-214, February.
  7. Chiarella, Carl & Clewlow, Les & Musti, Silvana, 2005. "A volatility decomposition control variate technique for Monte Carlo simulations of Heath Jarrow Morton models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 325-336, March.
  8. Carl Chiarella & Sara Pasquali & Wolfgang Runggaldier, 2001. "On Filtering in Markovian Term Structure Models (An Approximation Approach)," Research Paper Series 65, Quantitative Finance Research Centre, University of Technology, Sydney.
  9. Jury Falini, 2009. "Pricing caps with HJM models: the benefits of humped volatility," Department of Economics University of Siena 563, Department of Economics, University of Siena.
  10. Antje Berndt & Peter Ritchken & Zhiqiang Sun, 2010. "On Correlation and Default Clustering in Credit Markets," Review of Financial Studies, Society for Financial Studies, vol. 23(7), pages 2680-2729, July.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:uts:rpaper:13. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Duncan Ford).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.