IDEAS home Printed from https://ideas.repec.org/p/upf/upfgen/1259.html
   My bibliography  Save this paper

An enhanced concave program relaxation for choice network revenue management

Author

Listed:
  • Joern Meissner
  • Arne Strauss
  • Kalyan Talluri

Abstract

The network choice revenue management problem models customers as choosing from an offer-set, and the firm decides the best subset to offer at any given moment to maximize expected revenue. The resulting dynamic program for the firm is intractable and approximated by a deterministic linear program called the CDLP which has an exponential number of columns. However, under the choice-set paradigm when the segment consideration sets overlap, the CDLP is difficult to solve. Column generation has been proposed but finding an entering column has been shown to be NP-hard. In this paper, starting with a concave program formulation based on segment-level consideration sets called SDCP, we add a class of constraints called product constraints, that project onto subsets of intersections. In addition we propose a natural direct tightening of the SDCP called ?SDCP, and compare the performance of both methods on the benchmark data sets in the literature. Both the product constraints and the ?SDCP method are very simple and easy to implement and are applicable to the case of overlapping segment consideration sets. In our computational testing on the benchmark data sets in the literature, SDCP with product constraints achieves the CDLP value at a fraction of the CPU time taken by column generation and we believe is a very promising approach for quickly approximating CDLP when segment consideration sets overlap and the consideration sets themselves are relatively small.

Suggested Citation

  • Joern Meissner & Arne Strauss & Kalyan Talluri, 2011. "An enhanced concave program relaxation for choice network revenue management," Economics Working Papers 1259, Department of Economics and Business, Universitat Pompeu Fabra, revised Aug 2011.
  • Handle: RePEc:upf:upfgen:1259
    as

    Download full text from publisher

    File URL: https://econ-papers.upf.edu/papers/1259.pdf
    File Function: Whole Paper
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kalyan Talluri & Garrett van Ryzin, 1999. "A Randomized Linear Programming Method for Computing Network Bid Prices," Transportation Science, INFORMS, vol. 33(2), pages 207-216, May.
    2. Meissner, Joern & Strauss, Arne, 2012. "Network revenue management with inventory-sensitive bid prices and customer choice," European Journal of Operational Research, Elsevier, vol. 216(2), pages 459-468.
    3. Qian Liu & Garrett van Ryzin, 2008. "On the Choice-Based Linear Programming Model for Network Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 10(2), pages 288-310, October.
    4. Dan Zhang & Daniel Adelman, 2009. "An Approximate Dynamic Programming Approach to Network Revenue Management with Customer Choice," Transportation Science, INFORMS, vol. 43(3), pages 381-394, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meissner, Joern & Strauss, Arne, 2012. "Network revenue management with inventory-sensitive bid prices and customer choice," European Journal of Operational Research, Elsevier, vol. 216(2), pages 459-468.
    2. Xinan Yang & Arne K. Strauss & Christine S. M. Currie & Richard Eglese, 2016. "Choice-Based Demand Management and Vehicle Routing in E-Fulfillment," Transportation Science, INFORMS, vol. 50(2), pages 473-488, May.
    3. W. Zachary Rayfield & Paat Rusmevichientong & Huseyin Topaloglu, 2015. "Approximation Methods for Pricing Problems Under the Nested Logit Model with Price Bounds," INFORMS Journal on Computing, INFORMS, vol. 27(2), pages 335-357, May.
    4. Arne Strauss & Kalyan Talluri, 2012. "A Tractable Consideration Set Structure for Network Revenue Management," Working Papers 606, Barcelona School of Economics.
    5. Guillermo Gallego & Huseyin Topaloglu, 2014. "Constrained Assortment Optimization for the Nested Logit Model," Management Science, INFORMS, vol. 60(10), pages 2583-2601, October.
    6. Sumit Kunnumkal & Kalyan Talluri, 2012. "A New Compact Linear Programming Formulation for Choice Network Revenue Management," Working Papers 677, Barcelona School of Economics.
    7. Dan Zhang & Larry Weatherford, 2017. "Dynamic Pricing for Network Revenue Management: A New Approach and Application in the Hotel Industry," INFORMS Journal on Computing, INFORMS, vol. 29(1), pages 18-35, February.
    8. Arne Strauss & Kalyan Talluri, 2012. "A tractable consideration set structure for network revenue management," Economics Working Papers 1303, Department of Economics and Business, Universitat Pompeu Fabra, revised Oct 2012.
    9. Sumit Kunnumkal & Kalyan Talluri, 2012. "A new compact linear programming formulation for choice network revenue management," Economics Working Papers 1349, Department of Economics and Business, Universitat Pompeu Fabra.
    10. Kalyan Talluri, 2014. "New Formulations for Choice Network Revenue Management," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 401-413, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Houy & François Le Grand, 2015. "The Monte Carlo first-come-first-served heuristic for network revenue management," Working Papers halshs-01155698, HAL.
    2. Kalyan Talluri, 2014. "New Formulations for Choice Network Revenue Management," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 401-413, May.
    3. Meissner, Joern & Strauss, Arne, 2012. "Improved bid prices for choice-based network revenue management," European Journal of Operational Research, Elsevier, vol. 217(2), pages 417-427.
    4. Nicolas Houy & François Le Grand, 2015. "Financing and advising with (over)confident entrepreneurs : an experimental investigation," Working Papers 1514, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
    5. Meissner, Joern & Strauss, Arne, 2012. "Network revenue management with inventory-sensitive bid prices and customer choice," European Journal of Operational Research, Elsevier, vol. 216(2), pages 459-468.
    6. Thomas W. M. Vossen & Dan Zhang, 2015. "Reductions of Approximate Linear Programs for Network Revenue Management," Operations Research, INFORMS, vol. 63(6), pages 1352-1371, December.
    7. Yuhang Ma & Paat Rusmevichientong & Mika Sumida & Huseyin Topaloglu, 2020. "An Approximation Algorithm for Network Revenue Management Under Nonstationary Arrivals," Operations Research, INFORMS, vol. 68(3), pages 834-855, May.
    8. Sumit Kunnumkal & Kalyan Talluri, 2019. "Choice Network Revenue Management Based on New Tractable Approximations," Transportation Science, INFORMS, vol. 53(6), pages 1591-1608, November.
    9. Sumit Kunnumkal & Kalyan Talluri, 2016. "Technical Note—A Note on Relaxations of the Choice Network Revenue Management Dynamic Program," Operations Research, INFORMS, vol. 64(1), pages 158-166, February.
    10. Mika Sumida & Huseyin Topaloglu, 2019. "An Approximation Algorithm for Capacity Allocation Over a Single Flight Leg with Fare-Locking," INFORMS Journal on Computing, INFORMS, vol. 31(1), pages 83-99, February.
    11. Chaoxu Tong & Huseyin Topaloglu, 2014. "On the Approximate Linear Programming Approach for Network Revenue Management Problems," INFORMS Journal on Computing, INFORMS, vol. 26(1), pages 121-134, February.
    12. Paat Rusmevichientong & Zuo-Jun Max Shen & David B. Shmoys, 2010. "Dynamic Assortment Optimization with a Multinomial Logit Choice Model and Capacity Constraint," Operations Research, INFORMS, vol. 58(6), pages 1666-1680, December.
    13. Paat Rusmevichientong & Huseyin Topaloglu, 2012. "Robust Assortment Optimization in Revenue Management Under the Multinomial Logit Choice Model," Operations Research, INFORMS, vol. 60(4), pages 865-882, August.
    14. Li, Dong & Pang, Zhan, 2017. "Dynamic booking control for car rental revenue management: A decomposition approach," European Journal of Operational Research, Elsevier, vol. 256(3), pages 850-867.
    15. Dan Zhang, 2011. "An Improved Dynamic Programming Decomposition Approach for Network Revenue Management," Manufacturing & Service Operations Management, INFORMS, vol. 13(1), pages 35-52, April.
    16. Sumit Kunnumkal & Kalyan Talluri, 2019. "A strong Lagrangian relaxation for general discrete-choice network revenue management," Computational Optimization and Applications, Springer, vol. 73(1), pages 275-310, May.
    17. Juan M. Chaneton & Gustavo Vulcano, 2011. "Computing Bid Prices for Revenue Management Under Customer Choice Behavior," Manufacturing & Service Operations Management, INFORMS, vol. 13(4), pages 452-470, October.
    18. Sumit Kunnumkal & Kalyan Talluri, 2012. "A New Compact Linear Programming Formulation for Choice Network Revenue Management," Working Papers 677, Barcelona School of Economics.
    19. Sumit Kunnumkal & Kalyan Talluri, 2012. "A new compact linear programming formulation for choice network revenue management," Economics Working Papers 1349, Department of Economics and Business, Universitat Pompeu Fabra.
    20. Stefanus Jasin & Sunil Kumar, 2012. "A Re-Solving Heuristic with Bounded Revenue Loss for Network Revenue Management with Customer Choice," Mathematics of Operations Research, INFORMS, vol. 37(2), pages 313-345, May.

    More about this item

    Keywords

    discrete-choice models; network revenue management; optimization;
    All these keywords.

    JEL classification:

    • M11 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - Production Management
    • M31 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Marketing
    • L93 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Air Transportation
    • L83 - Industrial Organization - - Industry Studies: Services - - - Sports; Gambling; Restaurants; Recreation; Tourism

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:upf:upfgen:1259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.econ.upf.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.