Advanced Search
MyIDEAS: Login

Spurious Inference in the GARCH(1,1) Model When It Is Weakly Identified

Contents:

Author Info

  • Jun Ma
  • Charles Nelson
  • Richard Startz

Abstract

This paper shows that the Zero-Information-Limit-Condition (ZILC) formulated by Nelson and Startz (2006) holds in the GARCH(1,1) model. As a result, the GARCH estimate tends to have too small a standard error relative to the true one when the ARCH parameter is small, even when sample size becomes very large. In combination with an upward bias in the GARCH estimate, the small standard error will often lead to the spurious inference that volatility is highly persistent when it is not. We develop an empirical strategy to deal with this issue and show how it applies to real datasets.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.bepress.com/snde/vol11/iss1/art1/
Download Restriction: no

Bibliographic Info

Paper provided by University of Washington, Department of Economics in its series Working Papers with number UWEC-2006-14-P.

as in new window
Length:
Date of creation: Mar 2007
Date of revision: Mar 2007
Publication status: Published in Studies in Nonlinear Dynamics & Econometrics, Volume Vol.11, Article 1
Handle: RePEc:udb:wpaper:uwec-2006-14-p

Contact details of provider:
Postal: Box 353330, Seattle, WA 98193-3330
Email:
Web page: http://www.econ.washington.edu/
More information through EDIRC

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Enders, Walter & Ma, Jun, 2011. "Sources of the great moderation: A time-series analysis of GDP subsectors," Journal of Economic Dynamics and Control, Elsevier, vol. 35(1), pages 67-79, January.
  2. Liu, Yan & Luger, Richard, 2009. "Efficient estimation of copula-GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2284-2297, April.
  3. Kishor, N. Kundan & Marfatia, Hardik A., 2013. "The time-varying response of foreign stock markets to U.S. monetary policy surprises: Evidence from the Federal funds futures market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 24(C), pages 1-24.
  4. Donald W.K. Andrews & Patrik Guggenberger, 2011. "A Conditional-Heteroskedasticity-Robust Confidence Interval for the Autoregressive Parameter," Cowles Foundation Discussion Papers 1812, Cowles Foundation for Research in Economics, Yale University.
  5. Sarkar, Asani & Zhang, Lingjia, 2009. "Time varying consumption covariance and dynamics of the equity premium: Evidence from the G7 countries," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 613-631, September.
  6. Luger, Richard, 2012. "Finite-sample bootstrap inference in GARCH models with heavy-tailed innovations," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3198-3211.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:udb:wpaper:uwec-2006-14-p. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Michael Goldblatt).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.