IDEAS home Printed from https://ideas.repec.org/p/tse/wpaper/25761.html
   My bibliography  Save this paper

Combining Experts’ Judgments: Comparison of Algorithmic Methods using Synthetic Data

Author

Listed:
  • Hammitt, James K.
  • Zhang, Yifan

Abstract

Expert judgment (or expert elicitation) is a formal process for eliciting judgments from subject-matter experts about the value of a decision-relevant quantity. Judgments in the form of subjective probability distributions are obtained from several experts, raising the question how best to combine information from multiple experts. A number of algorithmic approaches have been proposed, of which the most commonly employed is the equal-weight combination (the average of the experts’ distributions). We evaluate the properties of five combination methods (equal-weight, best-expert, performance, frequentist, and copula) using simulated expert-judgment data for which we know the process generating the experts’ distributions. We examine cases in which two well-calibrated experts are of equal or unequal quality and their judgments are independent, positively or negatively dependent. In this setting, the copula, frequentist, and best-expert approaches perform better and the equal-weight combination method performs worse than the alternative approaches.

Suggested Citation

  • Hammitt, James K. & Zhang, Yifan, 2012. "Combining Experts’ Judgments: Comparison of Algorithmic Methods using Synthetic Data," TSE Working Papers 12-293, Toulouse School of Economics (TSE).
  • Handle: RePEc:tse:wpaper:25761
    as

    Download full text from publisher

    File URL: http://www.tse-fr.eu/sites/default/files/medias/doc/by/hammitt/wp_tse_293.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Flandoli, F. & Giorgi, E. & Aspinall, W.P. & Neri, A., 2011. "Comparison of a new expert elicitation model with the Classical Model, equal weights and single experts, using a cross-validation technique," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1292-1310.
    2. James K. Hammitt & Alexander I. Shlyakhter, 1999. "The Expected Value of Information and the Probability of Surprise," Risk Analysis, John Wiley & Sons, vol. 19(1), pages 135-152, February.
    3. Robert T. Clemen & Gregory W. Fischer & Robert L. Winkler, 2000. "Assessing Dependence: Some Experimental Results," Management Science, INFORMS, vol. 46(8), pages 1100-1115, August.
    4. Robert T. Clemen & Robert L. Winkler, 1985. "Limits for the Precision and Value of Information from Dependent Sources," Operations Research, INFORMS, vol. 33(2), pages 427-442, April.
    5. Robert T. Clemen & Robert L. Winkler, 1999. "Combining Probability Distributions From Experts in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 19(2), pages 187-203, April.
    6. Robert L. Winkler & Roy M. Poses, 1993. "Evaluating and Combining Physicians' Probabilities of Survival in an Intensive Care Unit," Management Science, INFORMS, vol. 39(12), pages 1526-1543, December.
    7. Stephen C. Hora, 2010. "An Analytic Method for Evaluating the Performance of Aggregation Rules for Probability Densities," Operations Research, INFORMS, vol. 58(5), pages 1440-1449, October.
    8. Lin, Shi-Woei & Bier, Vicki M., 2008. "A study of expert overconfidence," Reliability Engineering and System Safety, Elsevier, vol. 93(5), pages 711-721.
    9. Cooke, Roger M. & Goossens, Louis L.H.J., 2008. "TU Delft expert judgment data base," Reliability Engineering and System Safety, Elsevier, vol. 93(5), pages 657-674.
    10. Robert T. Clemen & Terence Reilly, 1999. "Correlations and Copulas for Decision and Risk Analysis," Management Science, INFORMS, vol. 45(2), pages 208-224, February.
    11. Stephen C. Hora, 2004. "Probability Judgments for Continuous Quantities: Linear Combinations and Calibration," Management Science, INFORMS, vol. 50(5), pages 597-604, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher W. Karvetski & David R. Mandel & Daniel Irwin, 2020. "Improving Probability Judgment in Intelligence Analysis: From Structured Analysis to Statistical Aggregation," Risk Analysis, John Wiley & Sons, vol. 40(5), pages 1040-1057, May.
    2. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    3. Eggstaff, Justin W. & Mazzuchi, Thomas A. & Sarkani, Shahram, 2014. "The effect of the number of seed variables on the performance of Cooke′s classical model," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 72-82.
    4. MohammadAmin Fazli & Azin Ghazimatin & Jafar Habibi & Hamid Haghshenas, 2016. "Team selection for prediction tasks," Journal of Combinatorial Optimization, Springer, vol. 31(2), pages 743-757, February.
    5. Lisa A. Robinson & James K. Hammitt, 2015. "Research Synthesis and the Value per Statistical Life," Risk Analysis, John Wiley & Sons, vol. 35(6), pages 1086-1100, June.
    6. Patrick Afflerbach & Christopher Dun & Henner Gimpel & Dominik Parak & Johannes Seyfried, 2021. "A Simulation-Based Approach to Understanding the Wisdom of Crowds Phenomenon in Aggregating Expert Judgment," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(4), pages 329-348, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eggstaff, Justin W. & Mazzuchi, Thomas A. & Sarkani, Shahram, 2014. "The effect of the number of seed variables on the performance of Cooke′s classical model," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 72-82.
    2. Robert T. Clemen & Robert L. Winkler, 1999. "Combining Probability Distributions From Experts in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 19(2), pages 187-203, April.
    3. Robert L. Winkler & Robert T. Clemen, 2004. "Multiple Experts vs. Multiple Methods: Combining Correlation Assessments," Decision Analysis, INFORMS, vol. 1(3), pages 167-176, September.
    4. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    5. Erin Baker & Olaitan Olaleye, 2013. "Combining Experts: Decomposition and Aggregation Order," Risk Analysis, John Wiley & Sons, vol. 33(6), pages 1116-1127, June.
    6. Anil Gaba & Ilia Tsetlin & Robert L. Winkler, 2017. "Combining Interval Forecasts," Decision Analysis, INFORMS, vol. 14(1), pages 1-20, March.
    7. Werner, Christoph & Bedford, Tim & Cooke, Roger M. & Hanea, Anca M. & Morales-Nápoles, Oswaldo, 2017. "Expert judgement for dependence in probabilistic modelling: A systematic literature review and future research directions," European Journal of Operational Research, Elsevier, vol. 258(3), pages 801-819.
    8. Stephen C. Hora, 2010. "An Analytic Method for Evaluating the Performance of Aggregation Rules for Probability Densities," Operations Research, INFORMS, vol. 58(5), pages 1440-1449, October.
    9. Robert L. Winkler & Yael Grushka-Cockayne & Kenneth C. Lichtendahl Jr. & Victor Richmond R. Jose, 2019. "Probability Forecasts and Their Combination: A Research Perspective," Decision Analysis, INFORMS, vol. 16(4), pages 239-260, December.
    10. Edouard Kujawski & Mariana L. Alvaro & William R. Edwards, 2004. "Incorporating psychological influences in probabilistic cost analysis," Systems Engineering, John Wiley & Sons, vol. 7(3), pages 195-216.
    11. Jason R. W. Merrick & J. Rene van Dorp & Amita Singh, 2005. "Analysis of Correlated Expert Judgments from Extended Pairwise Comparisons," Decision Analysis, INFORMS, vol. 2(1), pages 17-29, March.
    12. Wang, Fan & Li, Heng & Dong, Chao & Ding, Lieyun, 2019. "Knowledge representation using non-parametric Bayesian networks for tunneling risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    13. Stephen C. Hora & Benjamin R. Fransen & Natasha Hawkins & Irving Susel, 2013. "Median Aggregation of Distribution Functions," Decision Analysis, INFORMS, vol. 10(4), pages 279-291, December.
    14. Henry A. Roman & James K. Hammitt & Tyra L. Walsh & David M. Stieb, 2012. "Expert Elicitation of the Value per Statistical Life in an Air Pollution Context," Risk Analysis, John Wiley & Sons, vol. 32(12), pages 2133-2151, December.
    15. Gilberto Montibeller & Detlof von Winterfeldt, 2015. "Cognitive and Motivational Biases in Decision and Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1230-1251, July.
    16. Jesus Palomo & David Rios Insua & Fabrizio Ruggeri, 2007. "Modeling External Risks in Project Management," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 961-978, August.
    17. Makariou, Despoina & Barrieu, Pauline & Tzougas, George, 2021. "A finite mixture modelling perspective for combining experts’ opinions with an application to quantile-based risk measures," LSE Research Online Documents on Economics 110763, London School of Economics and Political Science, LSE Library.
    18. Sulian Wang & Chen Wang, 2021. "Quantile Judgments of Lognormal Losses: An Experimental Investigation," Decision Analysis, INFORMS, vol. 18(1), pages 78-99, March.
    19. Despoina Makariou & Pauline Barrieu & George Tzougas, 2021. "A Finite Mixture Modelling Perspective for Combining Experts’ Opinions with an Application to Quantile-Based Risk Measures," Risks, MDPI, vol. 9(6), pages 1-25, June.
    20. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tse:wpaper:25761. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/tsetofr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.