Advanced Search
MyIDEAS: Login

Asymptotic Expansion and Estimation of EPMC for Linear Classification Rules in High Dimension

Contents:

Author Info

  • Tatsuya Kubokawa

    (Faculty of Economics, University of Tokyo)

  • Masashi Hyodo

    (Graduate School of Economics, University of Tokyo)

  • Muni S. Srivastava

    (Department of Statistics, University of Toronto,)

Registered author(s):

    Abstract

    The problem of classifying a new observation vector into one of the two known groups distributed as multivariate normal with common covariance matrix is consid- ered. In this paper, we handle the situation that the dimension, p, of the observation vectors is less than the total number, N, of observation vectors from the two groups, but both p and N tend to in nity with the same order. Since the inverse of the sample covariance matrix is close to an ill condition in this situation, it may be better to replace it with the inverse of the ridge-type estimator of the covariance matrix in the linear discriminant analysis (LDA). The resulting rule is called the ridge-type linear discriminant analysis (RLDA). The second-order expansion of the expected probability of misclassi cation (EPMC) for RLDA is derived, and the second-order unbiased estimator of EMPC is given. These results not only provide the corresponding conclusions for LDA, but also clarify the condition that RLDA improves on LDA in terms of EPMC. Finally, the performances of the second-order approximation and the unbiased estimator are investigated by simulation.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2011/2011cf818.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by CIRJE, Faculty of Economics, University of Tokyo in its series CIRJE F-Series with number CIRJE-F-818.

    as in new window
    Length: 30 pages
    Date of creation: Sep 2011
    Date of revision:
    Handle: RePEc:tky:fseres:2011cf818

    Contact details of provider:
    Postal: Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033
    Phone: +81-3-5841-5644
    Fax: +81-3-5841-8294
    Email:
    Web page: http://www.cirje.e.u-tokyo.ac.jp/index.html
    More information through EDIRC

    Related research

    Keywords:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Kubokawa, Tatsuya & Srivastava, Muni S., 2008. "Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 1906-1928, October.
    2. Fujikoshi, Yasunori, 2000. "Error Bounds for Asymptotic Approximations of the Linear Discriminant Function When the Sample Sizes and Dimensionality are Large," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 1-17, April.
    3. Gérard Letac & Hélène Massam, 2004. "All Invariant Moments of the Wishart Distribution," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics & Finnish Statistical Society & Norwegian Statistical Association & Swedish Statistical Association, vol. 31(2), pages 295-318.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2011cf818. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CIRJE administrative office).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.