Advanced Search
MyIDEAS: Login to save this paper or follow this series

Methods for Improvement in Estimation of a Normal Mean Matrix

Contents:

Author Info

  • Hisayuki Tsukuma

    (Faculty of Economics, University of Tokyo)

  • Tatsuya Kubokawa

    (Faculty of Economics, University of Tokyo)

Registered author(s):

    Abstract

    This paper is concerned with the problem of estimating a matrix of means in multivariate normal distributions with an unknown covariance matrix under the quadratic loss function. It is first shown that the modified Efron-Morris estimator is characterized as certain empirical Bayes estimator. This estimator modifies the crude Efron-Morris estimator by adding a scalar shrinkage term. It is next shown that the idea of this modification provides the general method for improvement of estimators, which results in the further improvement of several minimax estimators including the Stein, Dey and Haff estimators. As a new method for improvement, a random combination of the modified Stein and the James-Stein estimators is also proposed and is shown to be minimax. Through Monte Carlo studies for the risk behaviors, it is numerically shown that the proposed, combined estimator inherits the nice risk properties of both individual estimators and thus it has a very favorable risk behavior in a small sample case.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2005/2005cf378.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by CIRJE, Faculty of Economics, University of Tokyo in its series CIRJE F-Series with number CIRJE-F-378.

    as in new window
    Length: 27 pages
    Date of creation: Sep 2005
    Date of revision:
    Handle: RePEc:tky:fseres:2005cf378

    Contact details of provider:
    Postal: Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033
    Phone: +81-3-5841-5644
    Fax: +81-3-5841-8294
    Email:
    Web page: http://www.cirje.e.u-tokyo.ac.jp/index.html
    More information through EDIRC

    Related research

    Keywords:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Loh, Wei-Liem, 1991. "Estimating covariance matrices II," Journal of Multivariate Analysis, Elsevier, vol. 36(2), pages 163-174, February.
    2. Dey, Dipak K., 1987. "Improved estimation of a multinormal precision matrix," Statistics & Probability Letters, Elsevier, vol. 6(2), pages 125-128, November.
    3. Konno, Yoshihiko, 1991. "On estimation of a matrix of normal means with unknown covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 36(1), pages 44-55, January.
    4. Ghosh, Malay & Shieh, Gwowen, 1991. "Empirical Bayes minimax estimators of matrix normal means," Journal of Multivariate Analysis, Elsevier, vol. 38(2), pages 306-318, August.
    5. Bilodeau, Martin & Kariya, Takeaki, 1989. "Minimax estimators in the normal MANOVA model," Journal of Multivariate Analysis, Elsevier, vol. 28(2), pages 260-270, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2005cf378. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CIRJE administrative office).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.