Advanced Search
MyIDEAS: Login to save this paper or follow this series

A Revisit to Estimation of the Precision Matrix of the Wishart Distribution

Contents:

Author Info

  • Tatsuya Kubokawa

    (Faculty of Economics, The University of Tokyo)

Registered author(s):

    Abstract

    The estimation of the precision matrix of the Wishart distribution is one of classical problems studied in a decision-theoretic framework and is related to estimation of mean and covariance matrices of a multivariate normal distribution. This paper revisits the estimation problem of the precision matrix and investigates how it connects with the theory of the covariance estimation from a decision-theoretic aspect. To evaluate estimators in terms of risk functions, we employ two kinds of loss functions: the non-scale-invariant loss and the scale-invariant loss functions which are induced from estimation of means. Using the same methods as in the estimation of the covariance matrix, we derive not only the James-Stein type of estimators improving on the Stein type one under the non-scale-invariant loss. It is observed that dominance properties given in the estimation of the covariance matrix do not necessarily hold in our setup under the non-scale-invariant loss, but still hold relative to the scale-invariant loss. The simulation studies are given, and estimators having superior risk performances are proposed.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.cirje.e.u-tokyo.ac.jp/research/dp/2004/2004cf264.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by CIRJE, Faculty of Economics, University of Tokyo in its series CIRJE F-Series with number CIRJE-F-264.

    as in new window
    Length: 22 pages
    Date of creation: Feb 2004
    Date of revision:
    Handle: RePEc:tky:fseres:2004cf264

    Contact details of provider:
    Postal: Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033
    Phone: +81-3-5841-5644
    Fax: +81-3-5841-8294
    Email:
    Web page: http://www.cirje.e.u-tokyo.ac.jp/index.html
    More information through EDIRC

    Related research

    Keywords:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Zheng, Z., 1986. "On estimation of matrix of normal mean," Journal of Multivariate Analysis, Elsevier, vol. 18(1), pages 70-82, February.
    2. Sheena, Yo & Takemura, Akimichi, 1992. "Inadmissibility of non-order-preserving orthogonally invariant estimators of the covariance matrix in the case of Stein's loss," Journal of Multivariate Analysis, Elsevier, vol. 41(1), pages 117-131, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:tky:fseres:2004cf264. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CIRJE administrative office).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.