IDEAS home Printed from https://ideas.repec.org/p/tas/wpaper/23396.html
   My bibliography  Save this paper

Forecasting output gaps in the G-7 countries: The role of correlated Innovations and structural breaks

Author

Abstract

Trend GDP and output gaps play an important role in fiscal and monetary policy formulation, often including the need for forecasts. In this paper we focus on fore- casting trend GDP and output gaps with Beveridge-Nelson (1981) trend-cycle decompositions and investigate how these are affected by assumptions concern- ing correlated innovations and structural breaks. We evaluate expanding win- dows, one-step-ahead forecasts indirectly for the G-7 countries on the basis of real GDP growth rate forecasts. We find that correlated innovations affect real GDP growth rate forecasts positively, while allowing for structural breaks works for some countries but not for all. In the face of uncertainty the evidence supports that in making forecasts of trends and output gap policy makers should focus on allowing for the correlation of shocks as an order of priority higher than unknown structural breaks.

Suggested Citation

  • Dungey, Mardi & Jacobs, Jan P.A.M. & Tian, Jing, 2016. "Forecasting output gaps in the G-7 countries: The role of correlated Innovations and structural breaks," Working Papers 2016-04, University of Tasmania, Tasmanian School of Business and Economics.
  • Handle: RePEc:tas:wpaper:23396
    as

    Download full text from publisher

    File URL: http://eprints.utas.edu.au/23396/1/2016_04_Forecasting_Output_Gaps.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Perron, Pierre & Wada, Tatsuma, 2009. "Let's take a break: Trends and cycles in US real GDP," Journal of Monetary Economics, Elsevier, vol. 56(6), pages 749-765, September.
    2. Kiley, Michael T., 2013. "Output gaps," Journal of Macroeconomics, Elsevier, vol. 37(C), pages 1-18.
    3. Wieland, Volker & Wolters, Maik, 2013. "Forecasting and Policy Making," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 239-325, Elsevier.
    4. Basistha, Arabinda & Nelson, Charles R., 2007. "New measures of the output gap based on the forward-looking new Keynesian Phillips curve," Journal of Monetary Economics, Elsevier, vol. 54(2), pages 498-511, March.
    5. Jana Eklund & George Kapetanios & Simon Price, 2013. "Robust Forecast Methods and Monitoring during Structural Change," Manchester School, University of Manchester, vol. 81, pages 3-27, October.
    6. Mitra, Sinchan & Sinclair, Tara M., 2012. "Output Fluctuations In The G-7: An Unobserved Components Approach," Macroeconomic Dynamics, Cambridge University Press, vol. 16(3), pages 396-422, June.
    7. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    8. Giraitis, Liudas & Kapetanios, George & Price, Simon, 2013. "Adaptive forecasting in the presence of recent and ongoing structural change," Journal of Econometrics, Elsevier, vol. 177(2), pages 153-170.
    9. Beveridge, Stephen & Nelson, Charles R., 1981. "A new approach to decomposition of economic time series into permanent and transitory components with particular attention to measurement of the `business cycle'," Journal of Monetary Economics, Elsevier, vol. 7(2), pages 151-174.
    10. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    11. Pesaran, M. Hashem & Timmermann, Allan, 2004. "How costly is it to ignore breaks when forecasting the direction of a time series?," International Journal of Forecasting, Elsevier, vol. 20(3), pages 411-425.
    12. Peter K. Clark, 1987. "The Cyclical Component of U. S. Economic Activity," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 102(4), pages 797-814.
    13. Shigeru Iwata & Han Li, 2015. "What are the Differences in Trend Cycle Decompositions by Beveridge and Nelson and by Unobserved Component Models?," Econometric Reviews, Taylor & Francis Journals, vol. 34(1-2), pages 146-173, February.
    14. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    15. Pesaran, M. Hashem & Pick, Andreas & Pranovich, Mikhail, 2013. "Optimal forecasts in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 134-152.
    16. Tommaso Proietti, 2006. "Trend-Cycle Decompositions with Correlated Components," Econometric Reviews, Taylor & Francis Journals, vol. 25(1), pages 61-84.
    17. G. Elliott & C. Granger & A. Timmermann (ed.), 2013. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 2, number 2.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cremaschini, Alessandro & Maruotti, Antonello, 2023. "A finite mixture analysis of structural breaks in the G-7 gross domestic product series," Research in Economics, Elsevier, vol. 77(1), pages 76-90.
    2. Amy Y. Guisinger & Michael T. Owyang & Hannah Shell, 2018. "Comparing Measures of Potential Output," Review, Federal Reserve Bank of St. Louis, vol. 100(4), pages 297-316.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hännikäinen Jari, 2017. "Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    2. T. Berger, 2008. "Estimating Europe’s Natural Rates from a forward-looking Phillips curve," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 08/498, Ghent University, Faculty of Economics and Business Administration.
    3. Luis Uzeda, 2022. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 25-53, Emerald Group Publishing Limited.
    4. Juan Antolin-Diaz & Thomas Drechsel & Ivan Petrella, 2017. "Tracking the Slowdown in Long-Run GDP Growth," The Review of Economics and Statistics, MIT Press, vol. 99(2), pages 343-356, May.
    5. Gaëtan Stephan & Julien Lecumberry, 2015. "The German unemployment since the Hartz reforms: Permanent or transitory fall?," Post-Print halshs-01238494, HAL.
    6. Petrella, Ivan & Drechsel, Thomas & Antolin-Diaz, Juan, 2014. "Following the Trend: Tracking GDP when Long-Run Growth is Uncertain," CEPR Discussion Papers 10272, C.E.P.R. Discussion Papers.
    7. Biolsi, Christopher, 2021. "Labor productivity forecasts based on a Beveridge–Nelson filter: Is there statistical evidence for a slowdown?," Journal of Macroeconomics, Elsevier, vol. 69(C).
    8. Stephan, Gaëtan & Lecumberry, Julien, 2015. "The German unemployment since the Hartz reforms: Permanent or transitory fall?," Economics Letters, Elsevier, vol. 136(C), pages 49-54.
    9. Günes Kamber & James Morley & Benjamin Wong, 2018. "Intuitive and Reliable Estimates of the Output Gap from a Beveridge-Nelson Filter," The Review of Economics and Statistics, MIT Press, vol. 100(3), pages 550-566, July.
    10. Enders, Walter & Li, Jing, 2015. "Trend-cycle decomposition allowing for multiple smooth structural changes in the trend of US real GDP," Journal of Macroeconomics, Elsevier, vol. 44(C), pages 71-81.
    11. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
    12. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    13. Castillo, Luis & Florián, David, 2019. "Measuring the output gap, potential output growth and natural interest rate from a semi-structural dynamic model for Peru," Working Papers 2019-012, Banco Central de Reserva del Perú.
    14. Josefine Quast & Maik H. Wolters, 2022. "Reliable Real-Time Output Gap Estimates Based on a Modified Hamilton Filter," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(1), pages 152-168, January.
    15. Baetje, Fabian & Menkhoff, Lukas, 2016. "Equity premium prediction: Are economic and technical indicators unstable?," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1193-1207.
    16. Tae‐Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2022. "Forecasting Under Structural Breaks Using Improved Weighted Estimation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(6), pages 1485-1501, December.
    17. Angelia L. Grant & Joshua C.C. Chan, 2017. "A Bayesian Model Comparison for Trend‐Cycle Decompositions of Output," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 49(2-3), pages 525-552, March.
    18. Davide De Gaetano, 2018. "Forecast Combinations in the Presence of Structural Breaks: Evidence from U.S. Equity Markets," Mathematics, MDPI, vol. 6(3), pages 1-19, March.
    19. Max Soloschenko & Enzo Weber, 2021. "Trend-Cycle Interactions and the Subprime Crisis: Analysis of US and Canadian Output," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 17(2), pages 109-128, November.
    20. Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.

    More about this item

    Keywords

    trend; output gap; trend-cycle decomposition; real GDP; forecasts; structural break;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tas:wpaper:23396. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oscar Pavlov (email available below). General contact details of provider: https://edirc.repec.org/data/dutasau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.