IDEAS home Printed from https://ideas.repec.org/p/ssb/dispap/713.html
   My bibliography  Save this paper

A Comment on the Environment and Directed Technical Change

Author

Listed:

Abstract

The major claim in Acemoglu, Aghion, Bursztyn & Hemous (2012) (AABH) is that subsidies for research and development of clean technologies are more important than carbon taxes when dealing with climate change. However, they - unconventionally - assume that a patent only lasts for one period. In this note we introduce long-lived patents into the AABH model. This makes the role of a research subsidy for clean technologies in AABH far less crucial and reestablishes the role of the carbon tax. This is good news as it is far easier to tax emissions than to pick the right technologies to subsidize.

Suggested Citation

  • Mads Greaker & Tom-Reiel Heggedal, 2012. "A Comment on the Environment and Directed Technical Change," Discussion Papers 713, Statistics Norway, Research Department.
  • Handle: RePEc:ssb:dispap:713
    as

    Download full text from publisher

    File URL: https://www.ssb.no/a/publikasjoner/pdf/DP/dp713.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    2. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    3. Stephen H. Schneider & Lawrence H. Goulder, 1997. "Achieving low-cost emissions targets," Nature, Nature, vol. 389(6646), pages 13-14, September.
    4. Mosel Malte, 2011. "Competition, Imitation, and R&D Productivity in a Growth Model with Industry-Specific Patent Protection," Review of Law & Economics, De Gruyter, vol. 7(2), pages 601-652, December.
    5. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    6. Daron Acemoglu & Ufuk Akcigit, 2012. "Intellectual Property Rights Policy, Competition And Innovation," Journal of the European Economic Association, European Economic Association, vol. 10(1), pages 1-42, February.
    7. Fischer, Carolyn & Newell, Richard G., 2008. "Environmental and technology policies for climate mitigation," Journal of Environmental Economics and Management, Elsevier, vol. 55(2), pages 142-162, March.
    8. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    9. Goulder, Lawrence H. & Schneider, Stephen H., 1999. "Induced technological change and the attractiveness of CO2 abatement policies," Resource and Energy Economics, Elsevier, vol. 21(3-4), pages 211-253, August.
    10. Futagami, Koichi & Iwaisako, Tatsuro, 2007. "Dynamic analysis of patent policy in an endogenous growth model," Journal of Economic Theory, Elsevier, vol. 132(1), pages 306-334, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carolyn Fischer & Garth Heutel, 2013. "Environmental Macroeconomics: Environmental Policy, Business Cycles, and Directed Technical Change," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 197-210, June.
    2. Zhangsheng Liu & Liuqingqing Yang & Liqin Fan, 2021. "Induced Effect of Environmental Regulation on Green Innovation: Evidence from the Increasing-Block Pricing Scheme," IJERPH, MDPI, vol. 18(5), pages 1-15, March.
    3. Gerlagh, Reyer & Kverndokk, Snorre & Rosendahl, Knut Einar, 2014. "The optimal time path of clean energy R&D policy when patents have finite lifetime," Journal of Environmental Economics and Management, Elsevier, vol. 67(1), pages 2-19.
    4. Fischer, Carolyn & Witajewski-Baltvilks, Jan, 2019. "Green Innovation And Economic Growth In A North-South Model," RFF Working Paper Series 19-04, Resources for the Future.
    5. Mattauch, Linus & Creutzig, Felix & Edenhofer, Ottmar, 2015. "Avoiding carbon lock-in: Policy options for advancing structural change," Economic Modelling, Elsevier, vol. 50(C), pages 49-63.
    6. Jan Witajewski-Baltvilks & Carolyn Fischer, 2018. "Green Innovation And Economic Growth In A North-South Model," IBS Working Papers 10/2018, Instytut Badan Strukturalnych.
    7. Antoine Dechezleprêtre & Ralf Martin & Myra Mohnen, 2014. "Knowledge Spillovers from Clean and Dirty Technologies," CEP Discussion Papers dp1300, Centre for Economic Performance, LSE.
    8. Pottier, Antonin & Hourcade, Jean-Charles & Espagne, Etienne, 2014. "Modelling the redirection of technical change: The pitfalls of incorporeal visions of the economy," Energy Economics, Elsevier, vol. 42(C), pages 213-218.
    9. Song, Malin & Wang, Shuhong, 2016. "Can employment structure promote environment-biased technical progress?," Technological Forecasting and Social Change, Elsevier, vol. 112(C), pages 285-292.
    10. Laura Nowzohour, 2021. "Can Adjustments Costs in Research Derail the Transition to Green Growth ?," CIES Research Paper series 67-2021, Centre for International Environmental Studies, The Graduate Institute.
    11. Durmaz, Tunç & Schroyen, Fred, 2013. "Evaluating Carbon Capture and Storage in a Climate Model with Directed Technical Change," Discussion Paper Series in Economics 14/2013, Norwegian School of Economics, Department of Economics.
    12. Wiskich, Anthony, 2021. "A comment on innovation with multiple equilibria and "The environment and directed technical change"," Energy Economics, Elsevier, vol. 94(C).
    13. Malin Song & Shuhong Wang, 2015. "Environmental Efficiency Evaluation of China Based on a Kind of Congestion and Undesirable Output Coefficient," Panoeconomicus, Savez ekonomista Vojvodine, Novi Sad, Serbia, vol. 62(4), pages 453-468, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mort Webster & Karen Fisher-Vanden & David Popp & Nidhi Santen, 2017. "Should We Give Up after Solyndra? Optimal Technology R&D Portfolios under Uncertainty," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(S1), pages 123-151.
    2. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    3. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    4. Popp, David & Newell, Richard G. & Jaffe, Adam B., 2010. "Energy, the Environment, and Technological Change," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 873-937, Elsevier.
    5. Jin, Wei, 2015. "Can China harness globalization to reap domestic carbon savings? Modeling international technology diffusion in a multi-region framework," China Economic Review, Elsevier, vol. 34(C), pages 64-82.
    6. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    7. Grafström, Jonas & Poudineh, Rahmat, 2023. "No evidence of counteracting policy effects on European solar power invention and diffusion," Energy Policy, Elsevier, vol. 172(C).
    8. Hötte, Kerstin, 2020. "How to accelerate green technology diffusion? Directed technological change in the presence of coevolving absorptive capacity," Energy Economics, Elsevier, vol. 85(C).
    9. Cameron Hepburn & Jacquelyn Pless & David Popp, 2018. "Policy Brief—Encouraging Innovation that Protects Environmental Systems: Five Policy Proposals," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 154-169.
    10. Raphael Calel & Antoine Dechezleprêtre, 2016. "Environmental Policy and Directed Technological Change: Evidence from the European Carbon Market," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 173-191, March.
    11. Lazkano, Itziar & Pham, Linh, 2016. "Do Fossil fuel Taxes Promote Innovation in Renewable Electricity Generation?," Discussion Paper Series in Economics 16/2016, Norwegian School of Economics, Department of Economics.
    12. Lamperti, Francesco & Napoletano, Mauro & Roventini, Andrea, 2020. "Green Transitions And The Prevention Of Environmental Disasters: Market-Based Vs. Command-And-Control Policies," Macroeconomic Dynamics, Cambridge University Press, vol. 24(7), pages 1861-1880, October.
    13. Pizer, William A. & Popp, David, 2008. "Endogenizing technological change: Matching empirical evidence to modeling needs," Energy Economics, Elsevier, vol. 30(6), pages 2754-2770, November.
    14. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    15. Kerstin Hötte, 2021. "Skill transferability and the stability of transition pathways- A learning-based explanation for patterns of diffusion," Journal of Evolutionary Economics, Springer, vol. 31(3), pages 959-993, July.
    16. Jin, Wei & Zhang, ZhongXiang, "undated". "Product Homogeneity, Knowledge Spillovers, and Innovation: Why Energy Sector is Perplexed by a Slow Pace of Technological Progress," Working Papers 249504, Australian National University, Centre for Climate Economics & Policy.
    17. Shiell, Leslie & Lyssenko, Nikita, 2014. "Climate policy and induced R&D: How great is the effect?," Energy Economics, Elsevier, vol. 46(C), pages 279-294.
    18. Carolyn Fischer & Garth Heutel, 2013. "Environmental Macroeconomics: Environmental Policy, Business Cycles, and Directed Technical Change," Annual Review of Resource Economics, Annual Reviews, vol. 5(1), pages 197-210, June.
    19. Gillingham, Kenneth & Newell, Richard G. & Pizer, William A., 2008. "Modeling endogenous technological change for climate policy analysis," Energy Economics, Elsevier, vol. 30(6), pages 2734-2753, November.
    20. Wei Jin & ZhongXiang Zhang, 2014. "Explaining the Slow Pace of Energy Technological Innovation: Why Market Conditions Matter," CCEP Working Papers 1401, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.

    More about this item

    Keywords

    Environment; directed technological change; innovation policy;
    All these keywords.

    JEL classification:

    • O30 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - General
    • O31 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Innovation and Invention: Processes and Incentives
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ssb:dispap:713. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: L Maasø (email available below). General contact details of provider: https://edirc.repec.org/data/ssbgvno.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.