IDEAS home Printed from https://ideas.repec.org/p/skb/wpaper/cofie-07-2008.html
   My bibliography  Save this paper

Bayesian Analysis of Structural Credit Risk Models with Microstructure Noises

Author

Listed:
  • Shirley J. Huang

    (Lee Kong Chian School of Business, Singapore Management University)

  • Jun Yu

    (Sim Kee Boon Institute for Financial Economics, Singapore Management University)

Abstract

In this paper a Markov chain Monte Carlo (MCMC) technique is developed for the Bayesian analysis of structural credit risk models with microstruc- ture noises. The technique is based on the general Bayesian approach with posterior computations performed by Gibbs sampling. Simulations from the Markov chain, whose stationary distribution converges to the posterior distri- bution, enable exact finite sample inferences of model parameters. The exact inferences can easily be extended to latent state variables and any nonlinear transformation of state variables and parameters, facilitating practical credit risk applications. In addition, the comparison of alternative models can be based on deviance information criterion (DIC) which is straightforwardly ob- tained from the MCMC output. The method is implemented on the basic structural credit risk model with pure microstructure noises and some more general specifications using daily equity data from US and emerging mar- kets. We find empirical evidence that microstructure noises are positively correlated with the firm values in emerging markets.

Suggested Citation

  • Shirley J. Huang & Jun Yu, "undated". "Bayesian Analysis of Structural Credit Risk Models with Microstructure Noises," Working Papers CoFie-07-2008, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
  • Handle: RePEc:skb:wpaper:cofie-07-2008
    as

    Download full text from publisher

    File URL: http://www.smu.edu.sg/institutes/skbife/downloads/CoFiE/Working%20Papers/Bayesian%20Analysis%20of%20Structural%20Credit%20Risk%20Models%20with%20Microstructure%20Noises.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Chib, Siddhartha, 2001. "Markov chain Monte Carlo methods: computation and inference," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 5, chapter 57, pages 3569-3649, Elsevier.
    2. Peter C. B. Phillips & Jun Yu, 2009. "Simulation-Based Estimation of Contingent-Claims Prices," Review of Financial Studies, Society for Financial Studies, vol. 22(9), pages 3669-3705, September.
    3. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 2002. "Bayesian Analysis of Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 69-87, January.
    4. Jensen, Mark J. & Maheu, John M., 2010. "Bayesian semiparametric stochastic volatility modeling," Journal of Econometrics, Elsevier, vol. 157(2), pages 306-316, August.
    5. Peter C. B. Phillips & Jun Yu, 2023. "Information loss in volatility measurement with flat price trading," Empirical Economics, Springer, vol. 64(6), pages 2957-2999, June.
    6. Zhang, Lan & Mykland, Per A. & Ait-Sahalia, Yacine, 2005. "A Tale of Two Time Scales: Determining Integrated Volatility With Noisy High-Frequency Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 1394-1411, December.
    7. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    8. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    9. Park, Joon Y & Phillips, Peter C B, 2001. "Nonlinear Regressions with Integrated Time Series," Econometrica, Econometric Society, vol. 69(1), pages 117-161, January.
    10. Peter C. B. Phillips, 2005. "Jackknifing Bond Option Prices," The Review of Financial Studies, Society for Financial Studies, vol. 18(2), pages 707-742.
    11. Longstaff, Francis A & Schwartz, Eduardo S, 1995. "A Simple Approach to Valuing Risky Fixed and Floating Rate Debt," Journal of Finance, American Finance Association, vol. 50(3), pages 789-819, July.
    12. Yu, Jun, 2005. "On leverage in a stochastic volatility model," Journal of Econometrics, Elsevier, vol. 127(2), pages 165-178, August.
    13. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    14. Jacquier, Eric & Polson, Nicholas G & Rossi, Peter E, 1994. "Bayesian Analysis of Stochastic Volatility Models: Comments: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 12(4), pages 413-417, October.
    15. Pitt, Michael K., 2002. "Smooth particle filters for likelihood evaluation and maximisation," Economic Research Papers 269464, University of Warwick - Department of Economics.
    16. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    17. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    18. Jan Ericsson & Joel Reneby, 2005. "Estimating Structural Bond Pricing Models," The Journal of Business, University of Chicago Press, vol. 78(2), pages 707-735, March.
    19. Jun Yu & Renate Meyer, 2006. "Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 361-384.
    20. Jin‐Chuan Duan, 1994. "Maximum Likelihood Estimation Using Price Data Of The Derivative Contract," Mathematical Finance, Wiley Blackwell, vol. 4(2), pages 155-167, April.
    21. Renate Meyer & Jun Yu, 2000. "BUGS for a Bayesian analysis of stochastic volatility models," Econometrics Journal, Royal Economic Society, vol. 3(2), pages 198-215.
    22. Aït-Sahalia, Yacine & Mykland, Per A. & Zhang, Lan, 2011. "Ultra high frequency volatility estimation with dependent microstructure noise," Journal of Econometrics, Elsevier, vol. 160(1), pages 160-175, January.
    23. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    24. Pierre Collin‐Dufresne & Robert S. Goldstein, 2001. "Do Credit Spreads Reflect Stationary Leverage Ratios?," Journal of Finance, American Finance Association, vol. 56(5), pages 1929-1957, October.
    25. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    26. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    27. Ulrich K. M¸ller & Graham Elliott, 2003. "Tests for Unit Roots and the Initial Condition," Econometrica, Econometric Society, vol. 71(4), pages 1269-1286, July.
    28. Hasbrouck, Joel, 1993. "Assessing the Quality of a Security Market: A New Approach to Transaction-Cost Measurement," Review of Financial Studies, Society for Financial Studies, vol. 6(1), pages 191-212.
    29. Pitt, Michael K, 2002. "Smooth Particle Filters for Likelihood Evaluation and Maximisation," The Warwick Economics Research Paper Series (TWERPS) 651, University of Warwick, Department of Economics.
    30. Roll, Richard, 1984. "A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market," Journal of Finance, American Finance Association, vol. 39(4), pages 1127-1139, September.
    31. Berg, Andreas & Meyer, Renate & Yu, Jun, 2004. "Deviance Information Criterion for Comparing Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 22(1), pages 107-120, January.
    32. Duan, Jin-Chuan & Fulop, Andras, 2009. "Estimating the structural credit risk model when equity prices are contaminated by trading noises," Journal of Econometrics, Elsevier, vol. 150(2), pages 288-296, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bégin, Jean-François & Boudreault, Mathieu & Gauthier, Geneviève, 2017. "Firm-specific credit risk estimation in the presence of regimes and noisy prices," Finance Research Letters, Elsevier, vol. 23(C), pages 306-313.
    2. Wozabal, David & Hochreiter, Ronald, 2012. "A coupled Markov chain approach to credit risk modeling," Journal of Economic Dynamics and Control, Elsevier, vol. 36(3), pages 403-415.
    3. Xiao, Weilin & Zhang, Xili, 2016. "Pricing equity warrants with a promised lowest price in Merton’s jump–diffusion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 219-238.
    4. Chung, Tsz-Kin & Hui, Cho-Hoi & Li, Ka-Fai, 2013. "Explaining share price disparity with parameter uncertainty: Evidence from Chinese A- and H-shares," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 1073-1083.
    5. Kleppe, Tore Selland & Yu, Jun & Skaug, Hans J., 2014. "Maximum likelihood estimation of partially observed diffusion models," Journal of Econometrics, Elsevier, vol. 180(1), pages 73-80.
    6. Lindset, Snorre & Lund, Arne-Christian & Persson, Svein-Arne, 2014. "Credit risk and asymmetric information: A simplified approach," Journal of Economic Dynamics and Control, Elsevier, vol. 39(C), pages 98-112.
    7. Fulop, Andras & Li, Junye, 2013. "Efficient learning via simulation: A marginalized resample-move approach," Journal of Econometrics, Elsevier, vol. 176(2), pages 146-161.
    8. Guarin, Alexander & Liu, Xiaoquan & Ng, Wing Lon, 2014. "Recovering default risk from CDS spreads with a nonlinear filter," Journal of Economic Dynamics and Control, Elsevier, vol. 38(C), pages 87-104.
    9. Boudreault, Mathieu & Gauthier, Geneviève & Thomassin, Tommy, 2015. "Estimation of correlations in portfolio credit risk models based on noisy security prices," Journal of Economic Dynamics and Control, Elsevier, vol. 61(C), pages 334-349.
    10. Di Bu & Yin Liao, 2013. "Structural Credit Risk Model with Stochastic Volatility: A Particle-filter Approach," NCER Working Paper Series 98, National Centre for Econometric Research.
    11. Xiaoyi Han & Lung-Fei Lee, 2016. "Bayesian Analysis of Spatial Panel Autoregressive Models With Time-Varying Endogenous Spatial Weight Matrices, Common Factors, and Random Coefficients," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 642-660, October.
    12. Yong Li & Zeng Tao & Jun Yu, "undated". "Robust Deviance Information Criterion for Latent Variable Models," Working Papers CoFie-04-2012, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    13. Alina Sima (Grigore) & Alin Sima, 2011. "Distance to Default Estimates for Romanian Listed Companies," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 3(2), pages 091-106, December.
    14. Jieyan Fang-Klingler, 2019. "Impact of Readability on Corporate Bond Market," JRFM, MDPI, vol. 12(4), pages 1-18, December.
    15. Bu, Di & Liao, Yin, 2014. "Corporate credit risk prediction under stochastic volatility and jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 47(C), pages 263-281.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Jin-Chuan & Fulop, Andras, 2009. "Estimating the structural credit risk model when equity prices are contaminated by trading noises," Journal of Econometrics, Elsevier, vol. 150(2), pages 288-296, June.
    2. Shirley J. Huang & Qianqiu Liu & Jun Yu, 2007. "Realized Daily Variance of S&P 500 Cash Index: A Revaluation of Stylized Facts," Annals of Economics and Finance, Society for AEF, vol. 8(1), pages 33-56, May.
    3. Xi, Yanhui & Peng, Hui & Qin, Yemei & Xie, Wenbiao & Chen, Xiaohong, 2015. "Bayesian analysis of heavy-tailed market microstructure model and its application in stock markets," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 117(C), pages 141-153.
    4. Jun Yu & Renate Meyer, 2006. "Multivariate Stochastic Volatility Models: Bayesian Estimation and Model Comparison," Econometric Reviews, Taylor & Francis Journals, vol. 25(2-3), pages 361-384.
    5. Yu, Jun, 2005. "On leverage in a stochastic volatility model," Journal of Econometrics, Elsevier, vol. 127(2), pages 165-178, August.
    6. Chung, Tsz-Kin & Hui, Cho-Hoi & Li, Ka-Fai, 2013. "Explaining share price disparity with parameter uncertainty: Evidence from Chinese A- and H-shares," Journal of Banking & Finance, Elsevier, vol. 37(3), pages 1073-1083.
    7. Wang, Joanna J.J., 2012. "On asymmetric generalised t stochastic volatility models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(11), pages 2079-2095.
    8. Yu, Jun & Yang, Zhenlin & Zhang, Xibin, 2006. "A class of nonlinear stochastic volatility models and its implications for pricing currency options," Computational Statistics & Data Analysis, Elsevier, vol. 51(4), pages 2218-2231, December.
    9. Lengua Lafosse, Patricia & Rodríguez, Gabriel, 2018. "An empirical application of a stochastic volatility model with GH skew Student's t-distribution to the volatility of Latin-American stock returns," The Quarterly Review of Economics and Finance, Elsevier, vol. 69(C), pages 155-173.
    10. Jun Yu, 2007. "Automated Likelihood Based Inference for Stochastic Volatility Models," Working Papers 01-2007, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
    11. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, January.
    12. Phillip, Andrew & Chan, Jennifer & Peiris, Shelton, 2020. "On generalized bivariate student-t Gegenbauer long memory stochastic volatility models with leverage: Bayesian forecasting of cryptocurrencies with a focus on Bitcoin," Econometrics and Statistics, Elsevier, vol. 16(C), pages 69-90.
    13. Patricia Lengua Lafosse & Cristian Bayes & Gabriel Rodríguez, 2015. "A Stochastic Volatility Model with GH Skew Student’s t-Distribution: Application to Latin-American Stock Returns," Documentos de Trabajo / Working Papers 2015-405, Departamento de Economía - Pontificia Universidad Católica del Perú.
    14. Ramaprasad Bhar, 2010. "Stochastic Filtering with Applications in Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7736, January.
    15. Mike K. P. So & C. Y. Choi, 2009. "A threshold factor multivariate stochastic volatility model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(8), pages 712-735.
    16. Dionne, Georges & Laajimi, Sadok, 2012. "On the determinants of the implied default barrier," Journal of Empirical Finance, Elsevier, vol. 19(3), pages 395-408.
    17. Manabu Asai & Michael McAleer & Jun Yu, 2006. "Multivariate Stochastic Volatility," Microeconomics Working Papers 22058, East Asian Bureau of Economic Research.
    18. Abel Elizalde, 2006. "Credit Risk Models II: Structural Models," Working Papers wp2006_0606, CEMFI.
    19. Wang, Joanna J.J. & Chan, Jennifer S.K. & Choy, S.T. Boris, 2011. "Stochastic volatility models with leverage and heavy-tailed distributions: A Bayesian approach using scale mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 852-862, January.

    More about this item

    Keywords

    MCMC; Credit risk; Microstructure noise; Structural models; Deviance information criterion;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:skb:wpaper:cofie-07-2008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jaymie Xu (email available below). General contact details of provider: https://edirc.repec.org/data/sesmusg.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.