Advanced Search
MyIDEAS: Login to save this paper or follow this series

Evaluating hedge fund managers: A Bayesian investigation of skill and persistence

Contents:

Author Info

  • Vrontos Ioannis

    ()
    (Athens University of Economics and Business)

  • Vrontos Spyridon

    (University of Aegean)

  • Giamouridis Daniel

    (Athens University of Economics and Business and Faculty of Finance, Cass Business School)

Abstract

The last couple of decades has witnessed a growing interest in hedge funds. Academics and practitioners are intrigued by the distinct characteristics of these investment vehicles: hedge funds are flexible with respect to the types of securities they hold and the type of positions they take; they are not subject to public disclosure of their activities; and they are not evaluated against a passive benchmark. Operating in this environment encourages hedge fund managers to construct highly dynamic trading strategies and as a result expose their portfolios to a plethora of economic risk factors. From the investor point of view, very little is known about the investment process, the economic risks associated with a particular hedge fund or a hedge fund strategy, and the skills of the hedge fund manager. While the details of the investment process could be of little practical importance to the investor, the latter – risks and managerial skill - are not. The objective of separating ‘alpha’ and ‘beta’ - the non-systematic and systematic components of returns respectively – is thus one of the main themes of current interest on hedge fund investing. This work introduces a Bayesian approach to estimate the ‘alpha’ and ‘beta’ of hedge fund investments. The Bayesian analysis consists of parameter estimation and model selection, and is implemented via Markov Chain Monte Carlo methodologies. The proposed stochastic search algorithm is appealing in identifying the relevant systematic risk factors in situations where the set of possible factors is very large, i.e. in hedge funds (‘black box’ investments). The entire analysis is carried out in a dynamic setup where hedge fund return volatilities change over time. We address two empirical questions. First we examine if the proposed methodology has an impact on the relative ranking of hedge fund managers compared with current approaches. Second, we study the nature of persistence in hedge fund return performance, i.e. short- or long-term. These questions are extremely interesting for the practice of hedge fund investing. A reliable ‘alpha’ estimation leads to more efficient manager selection schemes, i.e. fund of hedge funds or multi-strategy funds. In addition identifying the nature of persistence in hedge fund investment performance helps in determining successful portfolio rebalancing strategies (timing).

Download Info

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Bibliographic Info

Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 2006 with number 487.

as in new window
Length:
Date of creation: 04 Jul 2006
Date of revision:
Handle: RePEc:sce:scecfa:487

Contact details of provider:
Email:
Web page: http://comp-econ.org/
More information through EDIRC

Related research

Keywords: Bayesian methods; Hedge Funds; Markov Chain Monte Carlo; Manager skill;

Find related papers by JEL classification:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:sce:scecfa:487. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.