Advanced Search
MyIDEAS: Login

McKean’s Method applied to American Call Options on Jump-Diffusion Processes

Contents:

Author Info

  • Andrew Ziogas
  • Carl Chiarella

Abstract

In this paper we derive the implicit integral equation for the price of an American call option in the case where the underlying asset follows a jump-diffusion process. We extend McKean's incomplete Fourier transform approach to solve the free boundary problem under Merton's framework, with the distribution for the jump size remaining unspecified. We show how our results are consistent with those of Gukhal (2001), who derived the same integral equation using the Geske-Johnson discretisation approach. The paper also derives some results concerning the limit for the free boundary at expiry, and presents an iterative numerical algorithm for solving the linked integral equation system for the American call's price and early exercise boundary. This scheme is applied to Merton's jump-diffusion model, where the jumps are log-normally distributed.

(This abstract was borrowed from another version of this item.)

Download Info

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Bibliographic Info

Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 2003 with number 39.

as in new window
Length:
Date of creation: 01 Aug 2003
Date of revision:
Handle: RePEc:sce:scecf3:39

Contact details of provider:
Email:
Web page: http://comp-econ.org/
More information through EDIRC

Related research

Keywords: Jump-diffusion model; American option; Free boundary problem;

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Carl Chiarella & Andrew Ziogas, 2002. "Evaluation of American Strangles," Computing in Economics and Finance 2002 28, Society for Computational Economics.
  2. Amin, Kaushik I, 1993. " Jump Diffusion Option Valuation in Discrete Time," Journal of Finance, American Finance Association, vol. 48(5), pages 1833-63, December.
  3. Ball, Clifford A & Torous, Walter N, 1985. " On Jumps in Common Stock Prices and Their Impact on Call Option Pricing," Journal of Finance, American Finance Association, vol. 40(1), pages 155-73, March.
  4. Kim, In Joon, 1990. "The Analytic Valuation of American Options," Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 547-72.
  5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  6. Chandrasekhar Reddy Gukhal, 2001. "Analytical Valuation of American Options on Jump-Diffusion Processes," Mathematical Finance, Wiley Blackwell, vol. 11(1), pages 97-115.
  7. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
  8. Geske, Robert & Johnson, Herb E, 1984. " The American Put Option Valued Analytically," Journal of Finance, American Finance Association, vol. 39(5), pages 1511-24, December.
  9. Jarrow, Robert A & Rosenfeld, Eric R, 1984. "Jump Risks and the Intertemporal Capital Asset Pricing Model," The Journal of Business, University of Chicago Press, vol. 57(3), pages 337-51, July.
  10. Philippe Jorion, 1988. "On Jump Processes in the Foreign Exchange and Stock Markets," Review of Financial Studies, Society for Financial Studies, vol. 1(4), pages 427-445.
  11. Peter Carr & Robert Jarrow & Ravi Myneni, 1992. "Alternative Characterizations Of American Put Options," Mathematical Finance, Wiley Blackwell, vol. 2(2), pages 87-106.
  12. Mulinacci, Sabrina, 1996. "An approximation of American option prices in a jump-diffusion model," Stochastic Processes and their Applications, Elsevier, vol. 62(1), pages 1-17, March.
  13. S. D. Jacka, 1991. "Optimal Stopping and the American Put," Mathematical Finance, Wiley Blackwell, vol. 1(2), pages 1-14.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Chiarella, Carl & Ziogas, Andrew, 2005. "Evaluation of American strangles," Journal of Economic Dynamics and Control, Elsevier, vol. 29(1-2), pages 31-62, January.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:sce:scecf3:39. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.