IDEAS home Printed from https://ideas.repec.org/p/sce/scecf3/281.html
   My bibliography  Save this paper

Goodness-of-fit of the Heston model

Author

Listed:
  • Nathan L. Joseph
  • Gilles Daniel
  • David S. Bree

Abstract

No abstract is available for this item.

Suggested Citation

  • Nathan L. Joseph & Gilles Daniel & David S. Bree, 2003. "Goodness-of-fit of the Heston model," Computing in Economics and Finance 2003 281, Society for Computational Economics.
  • Handle: RePEc:sce:scecf3:281
    as

    Download full text from publisher

    File URL: http://www.cs.man.ac.uk/~dbree/goodness-of-fit-Heston-Model.pdf
    File Function: main text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adrian Dragulescu & Victor Yakovenko, 2002. "Probability distribution of returns in the Heston model with stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 2(6), pages 443-453.
    2. M. F. M. Osborne, 1959. "Brownian Motion in the Stock Market," Operations Research, INFORMS, vol. 7(2), pages 145-173, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. In Kim & In-Seok Baek & Jaesun Noh & Sol Kim, 2007. "The role of stochastic volatility and return jumps: reproducing volatility and higher moments in the KOSPI 200 returns dynamics," Review of Quantitative Finance and Accounting, Springer, vol. 29(1), pages 69-110, July.
    2. Gilles Daniel & Nathan Joseph & David Bree, 2005. "Stochastic volatility and the goodness-of-fit of the Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 199-211.
    3. Dolgov, Urij, 2015. "Calibration of Heston's stochastic volatility model to an empirical density using a genetic algorithm," Forschung am ivwKöln 3/2015, Technische Hochschule Köln – University of Applied Sciences, Institute for Insurance Studies.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ralf Remer & Reinhard Mahnke, 2004. "Application of the heston and hull-white models to german dax data," Quantitative Finance, Taylor & Francis Journals, vol. 4(6), pages 685-693.
    2. Tangmongkollert, K. & Suwanna, S., 2016. "Asset price and trade volume relation in artificial market impacted by value investors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 450(C), pages 126-133.
    3. Kristoffer Glover & Hardy Hulley & Goran Peskir, 2011. "Three-Dimensional Brownian Motion and the Golden Ratio Rule," Research Paper Series 295, Quantitative Finance Research Centre, University of Technology, Sydney.
    4. A. Monteiro & R. Tütüncü & L. Vicente, 2011. "Estimation of risk-neutral density surfaces," Computational Management Science, Springer, vol. 8(4), pages 387-414, November.
    5. Zura Kakushadze, 2016. "Volatility Smile as Relativistic Effect," Papers 1610.02456, arXiv.org, revised Feb 2017.
    6. Trenca I. Ioan & Zoicas - Ienciu Adrian, 2008. "Stock returns and their probabilistic distribution (the Bucharest Stock Exchange case)," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 3(1), pages 860-865, May.
    7. Álvaro Cartea & Thilo Meyer-Brandis, 2010. "How Duration Between Trades of Underlying Securities Affects Option Prices," Review of Finance, European Finance Association, vol. 14(4), pages 749-785.
    8. Seemann, Lars & Hua, Jia-Chen & McCauley, Joseph L. & Gunaratne, Gemunu H., 2012. "Ensemble vs. time averages in financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(23), pages 6024-6032.
    9. Kevin Fergusson & Eckhard Platen, 2006. "On the Distributional Characterization of Daily Log-Returns of a World Stock Index," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(1), pages 19-38.
    10. Junike, Gero & Pankrashkin, Konstantin, 2022. "Precise option pricing by the COS method—How to choose the truncation range," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    11. Steven L. Heston & Alberto G. Rossi, 2017. "A Spanning Series Approach to Options," The Review of Asset Pricing Studies, Oxford University Press, vol. 7(1), pages 2-42.
    12. Ellis Scharfenaker, 2022. "Statistical Equilibrium Methods In Analytical Political Economy," Journal of Economic Surveys, Wiley Blackwell, vol. 36(2), pages 276-309, April.
    13. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    14. Anca Gheorghiu & Ion Sp^anulescu, 2011. "Macrostate Parameter and Investment Risk Diagrams for 2008 and 2009," Papers 1101.4674, arXiv.org.
    15. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    16. Bara Kim & In-Suk Wee, 2014. "Pricing of geometric Asian options under Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1795-1809, October.
    17. M. Hashem Pesaran, 2005. "Market Efficiency Today," IEPR Working Papers 05.41, Institute of Economic Policy Research (IEPR).
    18. Rashid, Abdul, 2007. "Stock prices and trading volume: An assessment for linear and nonlinear Granger causality," Journal of Asian Economics, Elsevier, vol. 18(4), pages 595-612, August.
    19. Adam Karp & Gary Van Vuuren, 2019. "Investment Implications Of The Fractal Market Hypothesis," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 14(01), pages 1-27, March.
    20. Anirban Chakraborti & Ioane Muni Toke & Marco Patriarca & Frederic Abergel, 2011. "Econophysics review: I. Empirical facts," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 991-1012.

    More about this item

    Keywords

    Stock markets; Stochastic volatility; Heston model;
    All these keywords.

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C40 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf3:281. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.