Advanced Search
MyIDEAS: Login

Numerical methods for the solution of a human capital model

Contents:

Author Info

  • Sisira K. Sarma

Abstract

Two finite-difference methods are constructed and used for the solution of a class of endogenous growth model with physical and human capital. Although both the numerical methods to be developed are implicit by construction, each of the methods can be implemented explicitly. The first method is second-order accurate whilst the second is of order one. Because it satisfies a "positivity condition", the first order method will be seen to be unconditionally-convergent to the correct equilibrium solution for all parameter values used in the simulation. On the other hand, the second-order method, obtained by taking a linear combination of first-order schemes, exhibits contrived numerical instabilities for certain choices of parameter values. Other standard methods like the widely-used Runge-Kutta and Euler methods also fail for certain parameter values.

Download Info

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Bibliographic Info

Paper provided by Society for Computational Economics in its series Computing in Economics and Finance 2001 with number 206.

as in new window
Length:
Date of creation: 01 Apr 2001
Date of revision:
Handle: RePEc:sce:scecf1:206

Contact details of provider:
Email:
Web page: http://www.econometricsociety.org/conference/SCE2001/SCE2001.html
More information through EDIRC

Related research

Keywords: finite-difference method; stability;

Find related papers by JEL classification:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:sce:scecf1:206. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.