IDEAS home Printed from https://ideas.repec.org/p/sce/scecf0/255.html
   My bibliography  Save this paper

Recovering Local Volatility Functions Of Forward Libor Rates

Author

Listed:
  • Grace Kuan

    (University of Warwick)

Abstract

It is commonly observed in the market that implied volatilities of standard European options vary with strike levels and expiration dates. The former is usually referred to as volatility skew and the later is volatility term structure. The idea of implied pricing is to recover the dynamics of the underlying asset from market prices of liquid options prices and use the information to price and hedge less liquid products. In this paper, we apply implied pricing in the interest rate market and use market cap prices to back out the local volatility functions of the forward LIBOR rate processes. The recovered dynamics of forward LIBOR rates reveal the market's expectation toward interest rates and they can be used to price other exotic interest rate options.The implied pricing methods developed so far mainly focus on the application in the equity market and foreign exchange market. The complexity of implementing implied methods to interest rate options lies in the fact that, usually in interest rate models, both the infinitesimal drift and volatility of the interest rate process are unknown. To save the computation of the drift, we work with the framework of forward LIBOR rate model in [3] and [4], where only the local volatility functions need to be approximated. We use spline functional approach suggested by Coleman, Li and Verma [2] to recover the local volatility. It is assumed to be a function of the time and forward LIBOR rate and represented by the tensor product splines. Given this representation, we use finite difference methods to solve the partial differential equation satisfied by caplet prices. The parameters of the splines are found by fitting the market caplet prices. The advantage of using forward LIBOR rate model is, given the local volatility functions, the drifts of forward LIBOR rates under the spot LIBOR measure or terminal forward measure can be easily obtained for the one-factor model.The paper is organised as follows. Section 2 gives an overview to implied pricing methods developed in both equity market and interest rate market. In section 3, we will have a brief review to the forward LIBOR rate model and describe the numerical procedure to recover local volatilities. Section 4 includes two computation examples. In the first example, the market caplet prices are simulated with extended forward LIBOR model developed by Andersen and Andreasen [1]. It shows that the method is able to recover the constant elasticity variance volatility structure accurately. In the second example, the method is applied to the market data of three months GBP LIBOR cap prices. The recovered local volatility functions appear non-linear in both variables of time and forward LIBOR rates.

Suggested Citation

  • Grace Kuan, 2000. "Recovering Local Volatility Functions Of Forward Libor Rates," Computing in Economics and Finance 2000 255, Society for Computational Economics.
  • Handle: RePEc:sce:scecf0:255
    as

    Download full text from publisher

    File URL: http://fmwww.bc.edu/cef00/papers/paper255.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    2. Farshid Jamshidian, 1997. "LIBOR and swap market models and measures (*)," Finance and Stochastics, Springer, vol. 1(4), pages 293-330.
    3. Joshua Rosenberg, 1999. "Empirical Tests of Interest Rate Model Pricing Kernels," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-015, New York University, Leonard N. Stern School of Business-.
    4. Dilip B. Madan & Frank Milne, 1994. "Contingent Claims Valued And Hedged By Pricing And Investing In A Basis," Mathematical Finance, Wiley Blackwell, vol. 4(3), pages 223-245, July.
    5. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    6. Amin, Kaushik I. & Morton, Andrew J., 1994. "Implied volatility functions in arbitrage-free term structure models," Journal of Financial Economics, Elsevier, vol. 35(2), pages 141-180, April.
    7. Alan Brace & Marek Musiela, 1994. "A Multifactor Gauss Markov Implementation Of Heath, Jarrow, And Morton," Mathematical Finance, Wiley Blackwell, vol. 4(3), pages 259-283, July.
    8. Melick, William R. & Thomas, Charles P., 1997. "Recovering an Asset's Implied PDF from Option Prices: An Application to Crude Oil during the Gulf Crisis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 32(1), pages 91-115, March.
    9. David Heath & Robert Jarrow & Andrew Morton, 2008. "Bond Pricing And The Term Structure Of Interest Rates: A New Methodology For Contingent Claims Valuation," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 13, pages 277-305, World Scientific Publishing Co. Pte. Ltd..
    10. Ronald Lagnado & Stanley Osher, "undated". "A Technique for Calibrating Derivative Security Pricing Models: Numerical Solution of an Inverse Problem," Computing in Economics and Finance 1997 101, Society for Computational Economics.
    11. Ait-Sahalia, Yacine, 1996. "Nonparametric Pricing of Interest Rate Derivative Securities," Econometrica, Econometric Society, vol. 64(3), pages 527-560, May.
    12. Miltersen, Kristian R & Sandmann, Klaus & Sondermann, Dieter, 1997. "Closed Form Solutions for Term Structure Derivatives with Log-Normal Interest Rates," Journal of Finance, American Finance Association, vol. 52(1), pages 409-430, March.
    13. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
    14. Yacine Aït-Sahalia & Andrew W. Lo, 1998. "Nonparametric Estimation of State-Price Densities Implicit in Financial Asset Prices," Journal of Finance, American Finance Association, vol. 53(2), pages 499-547, April.
    15. Marek Rutkowski & Marek Musiela, 1997. "Continuous-time term structure models: Forward measure approach (*)," Finance and Stochastics, Springer, vol. 1(4), pages 261-291.
    16. Constantinides, George M, 1992. "A Theory of the Nominal Term Structure of Interest Rates," Review of Financial Studies, Society for Financial Studies, vol. 5(4), pages 531-552.
    17. Rosenberg, Joshua V. & Engle, Robert F., 2002. "Empirical pricing kernels," Journal of Financial Economics, Elsevier, vol. 64(3), pages 341-372, June.
    18. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    19. Dilip B. Madan & Frank Milne, 1992. "Contingent Claims Valued and Hedged by Pricing and Investment in a Basis," Working Paper 868, Economics Department, Queen's University.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    3. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, June.
    4. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    5. Joe Akira Yoshino, 2003. "Market Risk and Volatility in the Brazilian Stock Market," Journal of Applied Economics, Universidad del CEMA, vol. 6, pages 385-403, November.
    6. Dai, Qiang & Singleton, Kenneth J., 2003. "Fixed-income pricing," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 20, pages 1207-1246, Elsevier.
    7. Bogdan Negrea & Bertrand Maillet & Emmanuel Jurczenko, 2002. "Revisited Multi-moment Approximate Option," FMG Discussion Papers dp430, Financial Markets Group.
    8. Zongwu Cai & Yongmiao Hong, 2013. "Some Recent Developments in Nonparametric Finance," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    9. Sanjay K. Nawalkha & Xiaoyang Zhuo, 2022. "A Theory of Equivalent Expectation Measures for Contingent Claim Returns," Journal of Finance, American Finance Association, vol. 77(5), pages 2853-2906, October.
    10. Simon H. Babbs, 2002. "Conditional Gaussian models of the term structure of interest rates," Finance and Stochastics, Springer, vol. 6(3), pages 333-353.
    11. Steven Kou, 2000. "A Jump Diffusion Model for Option Pricing with Three Properties: Leptokurtic Feature, Volatility Smile, and Analytical Tractability," Econometric Society World Congress 2000 Contributed Papers 0062, Econometric Society.
    12. Zühlsdorff, Christian, 2002. "Extended Libor Market Models with Affine and Quadratic Volatility," Bonn Econ Discussion Papers 6/2002, University of Bonn, Bonn Graduate School of Economics (BGSE).
    13. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2005.
    14. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    15. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    16. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    17. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    18. Takashi Yasuoka, 2001. "Mathematical Pseudo-Completion Of The Bgm Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(03), pages 375-401.
    19. Jury Falini, 2009. "Pricing caps with HJM models: the benefits of humped volatility," Department of Economics University of Siena 563, Department of Economics, University of Siena.
    20. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 6, July-Dece.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sce:scecf0:255. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Christopher F. Baum (email available below). General contact details of provider: https://edirc.repec.org/data/sceeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.