Advanced Search
MyIDEAS: Login

Density and Conditional Distribution Based Specification Analysis

Contents:

Author Info

  • Diep Duong

    ()
    (Rutgers University)

  • Norman Swanson

    ()
    (Rutgers University)

Abstract

The technique of using densities and conditional distributions to carry out consistent specification testing and model selection amongst multiple diffusion processes have received considerable attention from both financial theoreticians and empirical econometricians over the last two decades. One reason for this interest is that correct specification of diffusion models describing dynamics of financial assets is crucial for many areas in finance including equity and option pricing, term structure modeling, and risk management, for example. In this paper, we discuss advances to this literature introduced by Corradi and Swanson (2005), who compare the cumulative distribution (marginal or joint) implied by a hypothesized null model with corresponding empirical distributions of observed data. We also outline and expand upon further testing results from Bhardwaj, Corradi and Swanson (BCS: 2008) and Corradi and Swanson (2011). In particular, parametric specification tests in the spirit of the conditional Kolmogorov test of Andrews (1997) that rely on block bootstrap resampling methods in order to construct test critical values are first discussed. Thereafter, extensions due to BCS (2008) for cases where the functional form of the conditional density is unknown are introduced, and related continuous time simulation methods are introduced. Finally, we broaden our discussion from single process specification testing to multiple process model selection by discussing how to construct predictive densities and how to compare the accuracy of predictive densities derived from alternative (possibly misspecified) diffusion models. In particular, we generalize simulation Steps outlined in Cai and Swanson (2011) to multifactor models where the number of latent variables is larger than three. These final tests can be thought of as continuous time generalizations of the discrete time "reality check" test statistics of White (2000), which are widely used in empirical finance (see e.g. Sullivan, Timmermann and White (1999, 2001)). We finish the chapter with an empirical illustration of model selection amongst alternative short term interest rate models.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: ftp://snde.rutgers.edu/Rutgers/wp/2013-12.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Rutgers University, Department of Economics in its series Departmental Working Papers with number 201312.

as in new window
Length: 20 pages
Date of creation: 16 Jul 2013
Date of revision:
Handle: RePEc:rut:rutres:201312

Contact details of provider:
Postal: New Jersey Hall - 75 Hamilton Street, New Brunswick, NJ 08901-1248
Phone: (732) 932-7482
Fax: (732) 932-7416
Web page: http://snde.rutgers.edu/Rutgers/wp/rutgers-wplist.html
More information through EDIRC

Related research

Keywords: multi-factor diffusion process; specification test; out-of-sample forecast; jump process; block bootstrap;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Francis X. Diebold & Canlin Li, 2002. "Forecasting the Term Structure of Government Bond Yields," Center for Financial Institutions Working Papers 02-34, Wharton School Center for Financial Institutions, University of Pennsylvania.
  2. Samuel Thompson, 2008. "Identifying Term Structure Volatility from the LIBOR-Swap Curve," Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 819-854, April.
  3. Bontemps, Christian & Meddahi, Nour, 2005. "Testing normality: a GMM approach," Journal of Econometrics, Elsevier, vol. 124(1), pages 149-186, January.
  4. Darrell Duffie & Rui Kan, 1996. "A Yield-Factor Model Of Interest Rates," Mathematical Finance, Wiley Blackwell, vol. 6(4), pages 379-406.
  5. Dennis Kristensen & Yongseok Shin, 2008. "Estimation of Dynamic Models with Nonparametric Simulated Maximum Likelihood," CREATES Research Papers 2008-58, School of Economics and Management, University of Aarhus.
  6. Yongmiao Hong, 2005. "Nonparametric Specification Testing for Continuous-Time Models with Applications to Term Structure of Interest Rates," Review of Financial Studies, Society for Financial Studies, vol. 18(1), pages 37-84.
  7. Monika Piazzesi, 2005. "Bond Yields and the Federal Reserve," Journal of Political Economy, University of Chicago Press, vol. 113(2), pages 311-344, April.
  8. Tauchen, George E. & Gallant, A. Ronald, 1995. "Estimation of Continuous Time Models for Stock Returns and Interest Rates," Working Papers 95-53, Duke University, Department of Economics.
  9. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  10. Emanuel, David C. & MacBeth, James D., 1982. "Further Results on the Constant Elasticity of Variance Call Option Pricing Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(04), pages 533-554, November.
  11. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-30, March.
  12. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
  13. Bhardwaj, Geetesh & Corradi, Valentina & Swanson, Norman R., 2008. "A Simulation-Based Specification Test for Diffusion Processes," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 176-193, April.
  14. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-43.
  15. Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  16. Beckers, Stan, 1980. " The Constant Elasticity of Variance Model and Its Implications for Option Pricing," Journal of Finance, American Finance Association, vol. 35(3), pages 661-73, June.
  17. Chan, K C, et al, 1992. " An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-27, July.
  18. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(04), pages 627-627, November.
  19. Sílvia Gonçalves & Halbert White, 2001. "The Bootstrap of the Mean for Dependent Heterogeneous Arrays," CIRANO Working Papers 2001s-19, CIRANO.
  20. Marsh, Terry A & Rosenfeld, Eric R, 1983. " Stochastic Processes for Interest Rates and Equilibrium Bond Prices," Journal of Finance, American Finance Association, vol. 38(2), pages 635-46, May.
  21. Hong, Yongmiao & Li, Haitao & Zhao, Feng, 2007. "Can the random walk model be beaten in out-of-sample density forecasts? Evidence from intraday foreign exchange rates," Journal of Econometrics, Elsevier, vol. 141(2), pages 736-776, December.
  22. Filippo Altissimo & Antonio Mele, 2009. "Simulated Non-Parametric Estimation of Dynamic Models," Review of Economic Studies, Oxford University Press, vol. 76(2), pages 413-450.
  23. Jushan Bai, 2003. "Testing Parametric Conditional Distributions of Dynamic Models," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 531-549, August.
  24. Inoue, Atsushi, 2001. "Testing For Distributional Change In Time Series," Econometric Theory, Cambridge University Press, vol. 17(01), pages 156-187, February.
  25. Courtadon, Georges, 1982. "The Pricing of Options on Default-Free Bonds," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(01), pages 75-100, March.
  26. Clements, Michael P. & Smith, Jeremy, 2002. "Evaluating multivariate forecast densities: a comparison of two approaches," International Journal of Forecasting, Elsevier, vol. 18(3), pages 397-407.
  27. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-33, March.
  28. Norman Swanson & Valentina Corradi, 2006. "Nonparametric Bootstrap Procedures for Predictive Inference Based on Recursive Estimation Schemes," Departmental Working Papers 200618, Rutgers University, Department of Economics.
  29. Michael J. Brennan and Eduardo S. Schwartz., 1979. "A Continuous-Time Approach to the Pricing of Bonds," Research Program in Finance Working Papers 85, University of California at Berkeley.
  30. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1999. "Multivariate Density Forecast Evaluation And Calibration In Financial Risk Management: High-Frequency Returns On Foreign Exchange," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 661-673, November.
  31. Brennan, Michael J. & Schwartz, Eduardo S., 1979. "A continuous time approach to the pricing of bonds," Journal of Banking & Finance, Elsevier, vol. 3(2), pages 133-155, July.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:rut:rutres:201312. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.