Advanced Search
MyIDEAS: Login

Volatility in Discrete and Continuous Time Models: A Survey with New Evidence on Large and Small Jumps

Contents:

Author Info

  • Diep Duong

    ()
    (Rutgers University)

  • Norman R. Swanson

    ()
    (Rutgers University)

Abstract

The topic of volatility measurement and estimation is central to �nancial and more generally time series econo- metrics. In this paper, we begin by surveying models of volatility, both discrete and continuous, and then we summarize some selected empirical �ndings from the literature. In particular, in the �rst sections of this paper, we discuss important developments in volatility models, with focus on time varying and stochastic volatility as well as nonparametric volatility estimation. The models discussed share the common feature that volatilities are unobserved, and belong to the class of missing variables. We then provide empirical evidence on "small" and "large" jumps from the perspective of their contribution to overall realized variation, using high frequency price return data on 25 stocks in the DOW 30. Our "small" and "large" jump variations are constructed at three truncation levels, using extant methodology of Barndor¤-Nielsen and Shephard (2006), Andersen, Bollerslev and Diebold (2007) and Aït-Sahalia and Jacod (2009a,b,c). Evidence of jumps is found in around 22.8% of the days during the 1993-2000 period, much higher than the corresponding �gure of 9.4% during the 2001-2008 period. While the overall role of jumps is lessening, the role of large jumps has not decreased, and indeed, the relative role of large jumps, as a proportion of overall jumps has actually increased in the 2000s.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: ftp://snde.rutgers.edu/Rutgers/wp/2011-17.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Rutgers University, Department of Economics in its series Departmental Working Papers with number 201117.

as in new window
Length: 20 pages
Date of creation: 15 May 2011
Date of revision:
Handle: RePEc:rut:rutres:201117

Contact details of provider:
Postal: New Jersey Hall - 75 Hamilton Street, New Brunswick, NJ 08901-1248
Phone: (732) 932-7482
Fax: (732) 932-7416
Web page: http://snde.rutgers.edu/Rutgers/wp/rutgers-wplist.html
More information through EDIRC

Related research

Keywords: Itô semi-martingale; realized volatility; jumps; multipower variation; tripower variation; truncated power variation; quarticity; infinite activity jumps;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Valentina Corradi & Norman Swanson & Walter Distaso, 2006. "Predictive Density Estimators for Daily Volatility Based on the Use of Realized Measures," Departmental Working Papers 200620, Rutgers University, Department of Economics.
  2. Tim Bollerslev & Tzuo Hao & George Tauchen, 2008. "Expected Stock Returns and Variance Risk Premia," CREATES Research Papers 2008-48, School of Economics and Management, University of Aarhus.
  3. Ole E. Barndorff-Nielsen & Neil Shephard, 2006. "Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 1-30.
  4. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. " Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-49, December.
  5. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. " On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
  6. Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
  7. Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1997. "Empirical Performance of Alternative Option Pricing Models," Yale School of Management Working Papers ysm54, Yale School of Management.
  8. Bates, David S., 2003. "Empirical option pricing: a retrospection," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 387-404.
  9. Cox, John C. & Ross, Stephen A., 1976. "The valuation of options for alternative stochastic processes," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 145-166.
  10. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
  11. Emanuel, David C. & MacBeth, James D., 1982. "Further Results on the Constant Elasticity of Variance Call Option Pricing Model," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(04), pages 533-554, November.
  12. Valentina Corradi & Norman R. Swanson, 2003. "Bootstrap Specification Tests for Diffusion Processes," Departmental Working Papers 200321, Rutgers University, Department of Economics.
  13. Neil Shephard, 2004. "A Central Limit Theorem for Realised Power and Bipower Variations of Continuous Semimartingales," Economics Series Working Papers 2004-FE-21, University of Oxford, Department of Economics.
  14. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-54, May-June.
  15. Anderson, Torben G. & Bollerslev, Tim & Diebold, Francis X. & Labys, Paul, 2002. "Modeling and Forecasting Realized Volatility," Working Papers 02-12, Duke University, Department of Economics.
  16. Chernov, Mikhail & Ghysels, Eric, 2000. "A study towards a unified approach to the joint estimation of objective and risk neutral measures for the purpose of options valuation," Journal of Financial Economics, Elsevier, vol. 56(3), pages 407-458, June.
  17. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
  18. Harvey, Andrew & Ruiz, Esther & Shephard, Neil, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Wiley Blackwell, vol. 61(2), pages 247-64, April.
  19. Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1997. "Empirical Performance of Alternative Option Pricing Models," Yale School of Management Working Papers ysm65, Yale School of Management.
  20. Andersen, Torben G. & Lund, Jesper, 1997. "Estimating continuous-time stochastic volatility models of the short-term interest rate," Journal of Econometrics, Elsevier, vol. 77(2), pages 343-377, April.
  21. Bernard Dumas & Jeff Fleming & Robert E. Whaley, 1998. "Implied Volatility Functions: Empirical Tests," Journal of Finance, American Finance Association, vol. 53(6), pages 2059-2106, December.
  22. Xin Huang & George Tauchen, 2005. "The Relative Contribution of Jumps to Total Price Variance," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 3(4), pages 456-499.
  23. Barndorff-Nielsen, Ole Eiler & Graversen, Svend Erik & Jacod, Jean & Podolskij, Mark, 2004. "A central limit theorem for realised power and bipower variations of continuous semimartingales," Technical Reports 2004,51, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
  24. Peter Carr & Liuren Wu, 2002. "What Type of Process Underlies Options? A Simple Robust Test," Finance 0207019, EconWPA.
  25. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
  26. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-55, January.
  27. Mark Britten-Jones & Anthony Neuberger, 2000. "Option Prices, Implied Price Processes, and Stochastic Volatility," Journal of Finance, American Finance Association, vol. 55(2), pages 839-866, 04.
  28. Bollerslev, Tim & Engle, Robert F & Wooldridge, Jeffrey M, 1988. "A Capital Asset Pricing Model with Time-Varying Covariances," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 116-31, February.
  29. Mandelbrot, Benoit B, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices: Comment," Econometrica, Econometric Society, vol. 41(1), pages 157-59, January.
  30. Peter Carr & Helyette Geman, 2002. "The Fine Structure of Asset Returns: An Empirical Investigation," The Journal of Business, University of Chicago Press, vol. 75(2), pages 305-332, April.
  31. Courtadon, Georges, 1982. "The Pricing of Options on Default-Free Bonds," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 17(01), pages 75-100, March.
  32. Corradi, Valentina, 2000. "Reconsidering the continuous time limit of the GARCH(1, 1) process," Journal of Econometrics, Elsevier, vol. 96(1), pages 145-153, May.
  33. Chacko, George & Viceira, Luis M., 2003. "Spectral GMM estimation of continuous-time processes," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 259-292.
  34. Bates, David S, 1996. "Jumps and Stochastic Volatility: Exchange Rate Processes Implicit in Deutsche Mark Options," Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 69-107.
  35. Giovanni Barone-Adesi & Robert F. Engle & Loriano Mancini, 2008. "A GARCH Option Pricing Model with Filtered Historical Simulation," Review of Financial Studies, Society for Financial Studies, vol. 21(3), pages 1223-1258, May.
  36. Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "A Theory of the Term Structure of Interest Rates," Econometrica, Econometric Society, vol. 53(2), pages 385-407, March.
  37. Chan, K C, et al, 1992. " An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-27, July.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:rut:rutres:201117. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ().

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.