IDEAS home Printed from https://ideas.repec.org/p/rtv/ceisrp/388.html
   My bibliography  Save this paper

Smallholder productivity and weather shocks: Adoption and impact of widely promoted agricultural practices in Tanzania

Author

Listed:

Abstract

Food security in Tanzania is projected to deteriorate as a result of climate change. In spite of the efforts to promote agricultural practices to improve productivity and food security, adoption rates of such practices remain low. Developing a thorough understanding of the determinants of adoption and updating our understanding of the impacts of these technologies under the site-specific effects of climate change are crucial to improve food security. This paper addresses these issues by using a novel data set that combines information from two large-scale household surveys with geo-referenced historical rainfall and temperature data in order to understand the determinants of the adoption of a set of agricultural practices and their impacts on maize productivity under weather shocks in Tanzania. The specific practices analyzed are: maize-legume intercropping, soil and water conservation practices (SWC), the use of organic fertilizers, inorganic fertilizers and high yielding maize varieties. We find strong complementarities between these practices both in terms of adoption and yield impacts. Long-run variability in rainfall decreases the adoption of fertilizers (both organic and inorganic) and increases that of improved seeds. Access to information and extension increase the incentives to adopt modern inputs as well as SWC. Farmers in areas where the cropping season’s rainfall has been highly variable and temperature has been unexpectedly high have significantly lower maize yields. SWC emerges as one of the most important practices in increasing yields with significant benefits by itself, in combination with other practices, under average weather conditions as well as under rainfall and temperature shocks. The shocks we analyze are expected to increase under climate change, underlining the importance of policies to buffer food security from the estimated effects of climate change. This paper contributes to evidence base to support policies to advance food security under climate change by underlining the importance of integrating site-specific analyses of climatic variables and their interactions with promoted practices in policy design and targeting.

Suggested Citation

  • Aslihan Arslan & Federico Belotti & Leslie Lipper, 2016. "Smallholder productivity and weather shocks: Adoption and impact of widely promoted agricultural practices in Tanzania," CEIS Research Paper 388, Tor Vergata University, CEIS, revised 24 Jun 2016.
  • Handle: RePEc:rtv:ceisrp:388
    as

    Download full text from publisher

    File URL: https://ceistorvergata.it/RePEc/rpaper/RP388.pdf
    File Function: Main text
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mulubrhan Amare & Solomon Asfaw & Bekele Shiferaw, 2012. "Welfare impacts of maize–pigeonpea intensification in Tanzania," Agricultural Economics, International Association of Agricultural Economists, vol. 43(1), pages 27-43, January.
    2. Dercon, Stefan & Christiaensen, Luc, 2011. "Consumption risk, technology adoption and poverty traps: Evidence from Ethiopia," Journal of Development Economics, Elsevier, vol. 96(2), pages 159-173, November.
    3. Rosenzweig, Mark R & Wolpin, Kenneth I, 1993. "Credit Market Constraints, Consumption Smoothing, and the Accumulation of Durable Production Assets in Low-Income Countries: Investment in Bullocks in India," Journal of Political Economy, University of Chicago Press, vol. 101(2), pages 223-244, April.
    4. Arellano, Manuel, 1993. "On the testing of correlated effects with panel data," Journal of Econometrics, Elsevier, vol. 59(1-2), pages 87-97, September.
    5. Strauss, John, 1982. "Determinants of food consumption in rural Sierra Leone : Application of the quadratic expenditure system to the consumption-leisure component of a household-firm model," Journal of Development Economics, Elsevier, vol. 11(3), pages 327-353, December.
    6. Foster, Andrew D & Rosenzweig, Mark R, 1995. "Learning by Doing and Learning from Others: Human Capital and Technical Change in Agriculture," Journal of Political Economy, University of Chicago Press, vol. 103(6), pages 1176-1209, December.
    7. Angrist, Joshua D, 2001. "Estimations of Limited Dependent Variable Models with Dummy Endogenous Regressors: Simple Strategies for Empirical Practice," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 2-16, January.
    8. Channing Arndt & William Farmer & Kenneth Strzepek & James Thurlow, 2012. "Climate Change, Agriculture and Food Security in Tanzania," Review of Development Economics, Wiley Blackwell, vol. 16(3), pages 378-393, August.
    9. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    10. Bezu, Sosina & Kassie, Girma T. & Shiferaw, Bekele & Ricker-Gilbert, Jacob, 2014. "Impact of Improved Maize Adoption on Welfare of Farm Households in Malawi: A Panel Data Analysis," World Development, Elsevier, vol. 59(C), pages 120-131.
    11. Christopher F Baum & Mark E. Schaffer & Steven Stillman, 2007. "Enhanced routines for instrumental variables/generalized method of moments estimation and testing," Stata Journal, StataCorp LP, vol. 7(4), pages 465-506, December.
    12. Melinda Smale & Richard E. Just & Howard D. Leathers, 1994. "Land Allocation in HYV Adoption Models: An Investigation of Alternative Explanations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 76(3), pages 535-546.
    13. Salvatore Di Falco & Marcella Veronesi & Mahmud Yesuf, 2011. "Does Adaptation to Climate Change Provide Food Security? A Micro-Perspective from Ethiopia," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 93(3), pages 825-842.
    14. Julius Manda & Arega D. Alene & Cornelis Gardebroek & Menale Kassie & Gelson Tembo, 2016. "Adoption and Impacts of Sustainable Agricultural Practices on Maize Yields and Incomes: Evidence from Rural Zambia," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(1), pages 130-153, February.
    15. Julie C. Delforce, 1994. "Separability in farm‐household economics: an experiment with linear programming," Agricultural Economics, International Association of Agricultural Economists, vol. 10(2), pages 165-177, April.
    16. Lapar, Ma. Lucila A. & Pandey, Sushil, 1999. "Adoption of soil conservation: the case of the Philippine uplands," Agricultural Economics, Blackwell, vol. 21(3), pages 241-256, December.
    17. Jeffrey H. Dorfman, 1996. "Modeling Multiple Adoption Decisions in a Joint Framework," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(3), pages 547-557.
    18. Arslan, Aslihan & Belotti, Federico & Lipper, Leslie, 2017. "Smallholder productivity and weather shocks: Adoption and impact of widely promoted agricultural practices in Tanzania," Food Policy, Elsevier, vol. 69(C), pages 68-81.
    19. Aslihan Arslan & Nancy McCarthy & Leslie Lipper & Solomon Asfaw & Andrea Cattaneo & Misael Kokwe, 2015. "Climate Smart Agriculture? Assessing the Adaptation Implications in Zambia," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(3), pages 753-780, September.
    20. Arslan, Aslihan & Belotti, Federico & Lipper, Leslie, 2016. "Smallholder productivity under climatic variability: Adoption and impact of widely promoted agricultural practices in Tanzania," ESA Working Papers 288969, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    21. B. L. Gardner & G. C. Rausser (ed.), 2001. "Handbook of Agricultural Economics," Handbook of Agricultural Economics, Elsevier, edition 1, volume 1, number 2.
    22. Timothy G. Conley & Christopher R. Udry, 2010. "Learning about a New Technology: Pineapple in Ghana," American Economic Review, American Economic Association, vol. 100(1), pages 35-69, March.
    23. Barrios, Salvador & Ouattara, Bazoumana & Strobl, Eric, 2008. "The impact of climatic change on agricultural production: Is it different for Africa?," Food Policy, Elsevier, vol. 33(4), pages 287-298, August.
    24. Di Falco, Salvatore & Bulte, Erwin, 2013. "The Impact of Kinship Networks on the Adoption of Risk-Mitigating Strategies in Ethiopia," World Development, Elsevier, vol. 43(C), pages 100-110.
    25. Awudu Abdulai & Wallace E. Huffman, 2005. "The Diffusion of New Agricultural Technologies: The Case of Crossbred-Cow Technology in Tanzania," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 87(3), pages 645-659.
    26. Delforce, Julie C., 1994. "Separability in farm-household economics: An experiment with linear programming," Agricultural Economics, Blackwell, vol. 10(2), pages 165-177, April.
    27. Schultz, Theodore W, 1975. "The Value of the Ability to Deal with Disequilibria," Journal of Economic Literature, American Economic Association, vol. 13(3), pages 827-846, September.
    28. Mundlak, Yair, 2001. "Production and supply," Handbook of Agricultural Economics, in: B. L. Gardner & G. C. Rausser (ed.), Handbook of Agricultural Economics, edition 1, volume 1, chapter 1, pages 3-85, Elsevier.
    29. Doss, Cheryl R., 2003. "Understanding Farm-Level Technology Adoption: Lessons Learned From Cimmyt'S Micro Surveys In Eastern Africa," Economics Working Papers 46552, CIMMYT: International Maize and Wheat Improvement Center.
    30. Temesgen Tadesse Deressa & Rashid M. Hassan, 2009. "Economic Impact of Climate Change on Crop Production in Ethiopia: Evidence from Cross-section Measures," Journal of African Economies, Centre for the Study of African Economies, vol. 18(4), pages 529-554, August.
    31. Mark R. Rosenzweig, 1980. "Neoclassical Theory and the Optimizing Peasant: An Econometric Analysis of Market Family Labor Supply in a Developing Country," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 94(1), pages 31-55.
    32. Besley, Timothy, 1995. "Property Rights and Investment Incentives: Theory and Evidence from Ghana," Journal of Political Economy, University of Chicago Press, vol. 103(5), pages 903-937, October.
    33. Asfaw, Solomon & McCarthy, Nancy & Lipper, Leslie & Arslan, Aslihan & Cattaneo, Andrea & Kachulu, Mutie, 2014. "Climate variability, adaptation strategies and food security in Malawi," ESA Working Papers 288980, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    34. Feder, Gershon & Just, Richard E & Zilberman, David, 1985. "Adoption of Agricultural Innovations in Developing Countries: A Survey," Economic Development and Cultural Change, University of Chicago Press, vol. 33(2), pages 255-298, January.
    35. Kassie, Menale & Jaleta, Moti & Shiferaw, Bekele & Mmbando, Frank & Mekuria, Mulugetta, 2013. "Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 525-540.
    36. Chavas, Jean-Paul & Holt, Matthew T, 1996. "Economic Behavior under Uncertainty: A Joint Analysis of Risk Preferences and Technology," The Review of Economics and Statistics, MIT Press, vol. 78(2), pages 329-335, May.
    37. Gershon Feder, 1982. "Adoption of Interrelated Agricultural Innovations: Complementarity and the Impacts of Risk, Scale, and Credit," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 64(1), pages 94-101.
    38. Fankhauser, Samuel & Smith, Joel B. & Tol, Richard S. J., 1999. "Weathering climate change: some simple rules to guide adaptation decisions," Ecological Economics, Elsevier, vol. 30(1), pages 67-78, July.
    39. Menale Kassie & Stein Holden, 2007. "Sharecropping efficiency in Ethiopia: threats of eviction and kinship," Agricultural Economics, International Association of Agricultural Economists, vol. 37(2‐3), pages 179-188, September.
    40. Mintewab Bezabih & Abe Damte Beyene & Zenebe Gebreegziabher & Livousew Borga, 2013. "Social Capital, climate change and soil conservation investment: panel data evidence from the Highlands of Ethiopia," GRI Working Papers 115, Grantham Research Institute on Climate Change and the Environment.
    41. Marenya, Paswel P. & Barrett, Christopher B., 2007. "Household-level determinants of adoption of improved natural resources management practices among smallholder farmers in western Kenya," Food Policy, Elsevier, vol. 32(4), pages 515-536, August.
    42. Hailemariam Teklewold & Menale Kassie & Bekele Shiferaw, 2013. "Adoption of Multiple Sustainable Agricultural Practices in Rural Ethiopia," Journal of Agricultural Economics, Wiley Blackwell, vol. 64(3), pages 597-623, September.
    43. Just, Richard E & Zilberman, David, 1983. "Stochastic Structure, Farm Size and Technology Adoption in Developing Agriculture," Oxford Economic Papers, Oxford University Press, vol. 35(2), pages 307-328, July.
    44. Ma. Lucila A. Lapar & Sushil Pandey, 1999. "Adoption of soil conservation: the case of the Philippine uplands," Agricultural Economics, International Association of Agricultural Economists, vol. 21(3), pages 241-256, December.
    45. Benjamin, Dwayne, 1992. "Household Composition, Labor Markets, and Labor Demand: Testing for Separation in Agricultural Household Models," Econometrica, Econometric Society, vol. 60(2), pages 287-322, March.
    46. Arslan, Aslihan & McCarthy, Nancy & Lipper, Leslie & Asfaw, Solomon & Cattaneo, Andrea, 2013. "Adoption and Intensity of Adoption of Conservation Farming Practices in Zambia," Food Security Collaborative Working Papers 147461, Michigan State University, Department of Agricultural, Food, and Resource Economics.
    47. ., 2013. "Application to social capital," Chapters, in: Change and Continuity at the World Bank, chapter 6, pages 75-83, Edward Elgar Publishing.
    48. B. L. Gardner & G. C. Rausser (ed.), 2001. "Handbook of Agricultural Economics," Handbook of Agricultural Economics, Elsevier, edition 1, volume 1, number 1.
    49. Lau, Lawrence J & Lin, Wuu-Long & Yotopoulos, Pan A, 1978. "The Linear Logarithmic Expenditure System: An Application to Consumption-Leisure Choice," Econometrica, Econometric Society, vol. 46(4), pages 843-868, July.
    50. Nelson, Gerald C. & Rosegrant, Mark W. & Koo, Jawoo & Robertson, Richard & Sulser, Timothy & Zhu, Tingju & Ringler, Claudia & Msangi, Siwa & Palazzo, Amanda & Batka, Miroslav & Magalhaes, Marilia & Va, 2009. "Climate change: Impact on agriculture and costs of adaptation," Food policy reports 21, International Food Policy Research Institute (IFPRI).
    51. David Roodman, 2011. "Fitting fully observed recursive mixed-process models with cmp," Stata Journal, StataCorp LP, vol. 11(2), pages 159-206, June.
    52. Mundlak, Yair, 1978. "On the Pooling of Time Series and Cross Section Data," Econometrica, Econometric Society, vol. 46(1), pages 69-85, January.
    53. Mathenge, Mary K. & Smale, Melinda & Olwande, John, 2014. "The impacts of hybrid maize seed on the welfare of farming households in Kenya," Food Policy, Elsevier, vol. 44(C), pages 262-271.
    54. Angrist, Joshua D, 2001. "Estimations of Limited Dependent Variable Models with Dummy Endogenous Regressors: Simple Strategies for Empirical Practice: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(1), pages 27-28, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazushi Takahashi & Rie Muraoka & Keijiro Otsuka, 2020. "Technology adoption, impact, and extension in developing countries’ agriculture: A review of the recent literature," Agricultural Economics, International Association of Agricultural Economists, vol. 51(1), pages 31-45, January.
    2. Aslihan Arslan & Kristin Floress & Christine Lamanna & Leslie Lipper & Solomon Asfaw & Todd Rosenstock, 2020. "IFAD RESEARCH SERIES 63 - The adoption of improved agricultural technologies - A meta-analysis for Africa," IFAD Research Series 304758, International Fund for Agricultural Development (IFAD).
    3. Ignaciuk, A. & Maggio, G. & Mastrorillo, M. & Sitko, N., 2021. "Adapting to high temperatures: evidence on the impacts of sustainable agricultural practices in Uganda," ESA Working Papers 309364, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    4. Lim, Krisha & Wichmann, Bruno & Luckert, Martin, 2021. "Adaptation, spatial effects, and targeting: Evidence from Africa and Asia," World Development, Elsevier, vol. 139(C).
    5. Garbero, A. & Marion, P., 2018. "IFAD RESEARCH SERIES 28 - Understanding the dynamics of adoption decisions and their poverty impacts: the case of improved maize seeds in Uganda," IFAD Research Series 280077, International Fund for Agricultural Development (IFAD).
    6. Gebremariam, Gebrelibanos & Tesfaye, Wondimagegn, 2018. "The heterogeneous effect of shocks on agricultural innovations adoption: Microeconometric evidence from rural Ethiopia," Food Policy, Elsevier, vol. 74(C), pages 154-161.
    7. Solomon Asfaw & Nancy McCarthy & Leslie Lipper & Aslihan Arslan & Andrea Cattaneo, 2016. "What determines farmers’ adaptive capacity? Empirical evidence from Malawi," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(3), pages 643-664, June.
    8. Asfaw, Solomon & Lipper, Leslie, 2015. "Adaptation to Climate Change and its Impacts on Food Security: Evidence from Niger," 2015 Conference, August 9-14, 2015, Milan, Italy 225667, International Association of Agricultural Economists.
    9. Julius Manda & Arega D. Alene & Cornelis Gardebroek & Menale Kassie & Gelson Tembo, 2016. "Adoption and Impacts of Sustainable Agricultural Practices on Maize Yields and Incomes: Evidence from Rural Zambia," Journal of Agricultural Economics, Wiley Blackwell, vol. 67(1), pages 130-153, February.
    10. Gin, Xavier & Yang, Dean, 2009. "Insurance, credit, and technology adoption: Field experimental evidencefrom Malawi," Journal of Development Economics, Elsevier, vol. 89(1), pages 1-11, May.
    11. Heleene Tambet & Yaniv Stopnitzky, 2021. "Climate Adaptation and Conservation Agriculture among Peruvian Farmers," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 900-922, May.
    12. Ruzzante, Sacha & Labarta, Ricardo & Bilton, Amy, 2021. "Adoption of agricultural technology in the developing world: A meta-analysis of the empirical literature," World Development, Elsevier, vol. 146(C).
    13. Verkaart, Simone & Munyua, Bernard G. & Mausch, Kai & Michler, Jeffrey D., 2017. "Welfare impacts of improved chickpea adoption: A pathway for rural development in Ethiopia?," Food Policy, Elsevier, vol. 66(C), pages 50-61.
    14. Lambrecht, Isabel & Vanlauwe, Bernard & Merckx, Roel & Maertens, Miet, 2014. "Understanding the Process of Agricultural Technology Adoption: Mineral Fertilizer in Eastern DR Congo," World Development, Elsevier, vol. 59(C), pages 132-146.
    15. Michler, Jeffrey D. & Baylis, Kathy & Arends-Kuenning, Mary & Mazvimavi, Kizito, 2019. "Conservation agriculture and climate resilience," Journal of Environmental Economics and Management, Elsevier, vol. 93(C), pages 148-169.
    16. Jeremy L. Jelliffe & Boris E. Bravo-Ureta & C. Michael Deom & David K. Okello, 2018. "Adoption of High-Yielding Groundnut Varieties: The Sustainability of a Farmer-Led Multiplication-Dissemination Program in Eastern Uganda," Sustainability, MDPI, vol. 10(5), pages 1-21, May.
    17. Giuseppe Maggio & Marina Mastrorillo & Nicholas J. Sitko, 2022. "Adapting to High Temperatures: Effect of Farm Practices and Their Adoption Duration on Total Value of Crop Production in Uganda," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(1), pages 385-403, January.
    18. Wondimagegn Tesfaye & Garrick Blalock & Nyasha Tirivayi, 2021. "Climate‐Smart Innovations and Rural Poverty in Ethiopia: Exploring Impacts and Pathways," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 878-899, May.
    19. Dsouza, Alwin & Mishra, Ashok. K., 2016. "Adoption and Abandonment of Conservation Technologies in Developing Economies: The Case of South Asia," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235243, Agricultural and Applied Economics Association.
    20. Makaiko G. Khonje & Julius Manda & Petros Mkandawire & Adane Hirpa Tufa & Arega D. Alene, 2018. "Adoption and welfare impacts of multiple agricultural technologies: evidence from eastern Zambia," Agricultural Economics, International Association of Agricultural Economists, vol. 49(5), pages 599-609, September.

    More about this item

    Keywords

    Technology adoption; productivity analysis; climate change; panel data; Tanzania.;
    All these keywords.

    JEL classification:

    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C33 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Models with Panel Data; Spatio-temporal Models
    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets
    • Q15 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Land Ownership and Tenure; Land Reform; Land Use; Irrigation; Agriculture and Environment
    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rtv:ceisrp:388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Barbara Piazzi (email available below). General contact details of provider: https://edirc.repec.org/data/csrotit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.