IDEAS home Printed from https://ideas.repec.org/p/rsc/rsceui/2012-48.html
   My bibliography  Save this paper

The Role of Thermal Storage and Natural Gas in a Smart Energy System

Author

Listed:
  • Jeroen Vandewalle
  • Nico Keyaerts
  • William D'haeseleer

Abstract

Smart grids are considered important building blocks of a future energy system that facilitates integration of massive distributed energy resources like gas-fired cogeneration (CHP). The latter produces thermal and electric power together and as such reinforces the interaction between the gas and electricity-distribution systems. Thermal storage makes up the key-source of flexibility that allows decoupling the electricity production from the heat demand. However, smart grids focus on electricity, often disregarding the role of gas and thermal storage in overall smart energy systems. We find that the technical impact of a massive introduction of CHP on the gas-distribution network is limited in most cases, even providing opportunities to free up capacity. Taking the consumer's viewpoint, we highlight the economic importance of the thermal storage tank, which requires a thermal capacity of two to three times the hourly thermal power output of the CHP to optimize electric power production and limit thermal losses. Further increasing the storage tank size can increase the gas-distribution capacity that can be marketed by the distribution system operator, but practical constraints in terms of dedicated land area have to be considered as well.

Suggested Citation

  • Jeroen Vandewalle & Nico Keyaerts & William D'haeseleer, 2012. "The Role of Thermal Storage and Natural Gas in a Smart Energy System," RSCAS Working Papers 2012/48, European University Institute.
  • Handle: RePEc:rsc:rsceui:2012/48
    as

    Download full text from publisher

    File URL: http://cadmus.eui.eu/bitstream/handle/1814/23774/RSCAS_2012_48rev.pdf?sequence=3
    Download Restriction: no

    File URL: http://hdl.handle.net/1814/23774
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haeseldonckx, Dries & Peeters, Leen & Helsen, Lieve & D'haeseleer, William, 2007. "The impact of thermal storage on the operational behaviour of residential CHP facilities and the overall CO2 emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1227-1243, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Woong Ko & Jong-Keun Park & Mun-Kyeom Kim & Jae-Haeng Heo, 2017. "A Multi-Energy System Expansion Planning Method Using a Linearized Load-Energy Curve: A Case Study in South Korea," Energies, MDPI, vol. 10(10), pages 1-24, October.
    2. Gaucher-Loksts, Erin & Athienitis, Andreas & Ouf, Mohamed, 2022. "Design and energy flexibility analysis for building integrated photovoltaics-heat pump combinations in a house," Renewable Energy, Elsevier, vol. 195(C), pages 872-884.
    3. Wang, Haichao & Abdollahi, Elnaz & Lahdelma, Risto & Jiao, Wenling & Zhou, Zhigang, 2015. "Modelling and optimization of the smart hybrid renewable energy for communities (SHREC)," Renewable Energy, Elsevier, vol. 84(C), pages 114-123.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Clegg, Stephen & Mancarella, Pierluigi, 2019. "Integrated electricity-heat-gas modelling and assessment, with applications to the Great Britain system. Part II: Transmission network analysis and low carbon technology and resilience case studies," Energy, Elsevier, vol. 184(C), pages 191-203.
    2. Stinner, Sebastian & Schlösser, Tim & Huchtemann, Kristian & Müller, Dirk & Monti, Antonello, 2017. "Primary energy evaluation of heat pumps considering dynamic boundary conditions in the energy system," Energy, Elsevier, vol. 138(C), pages 60-78.
    3. Baeten, Brecht & Confrey, Thomas & Pecceu, Sébastien & Rogiers, Frederik & Helsen, Lieve, 2016. "A validated model for mixing and buoyancy in stratified hot water storage tanks for use in building energy simulations," Applied Energy, Elsevier, vol. 172(C), pages 217-229.
    4. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    5. Facci, Andrea L. & Cigolotti, Viviana & Jannelli, Elio & Ubertini, Stefano, 2017. "Technical and economic assessment of a SOFC-based energy system for combined cooling, heating and power," Applied Energy, Elsevier, vol. 192(C), pages 563-574.
    6. Pina, Eduardo A. & Lozano, Miguel A. & Serra, Luis M., 2018. "Thermoeconomic cost allocation in simple trigeneration systems including thermal energy storage," Energy, Elsevier, vol. 153(C), pages 170-184.
    7. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    8. Dongmin Yu & Yuanzhu Meng & Gangui Yan & Gang Mu & Dezhi Li & Simon Le Blond, 2017. "Sizing Combined Heat and Power Units and Domestic Building Energy Cost Optimisation," Energies, MDPI, vol. 10(6), pages 1-17, June.
    9. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Kendall, Alissa & Træholt, Chresten, 2018. "Optimal design and operating strategies for a biomass-fueled combined heat and power system with energy storage," Energy, Elsevier, vol. 155(C), pages 620-629.
    10. de Ridder, Fjo & van Roy, Jeroen & de Schutter, Bert & Mazairac, Wiet, 2021. "An exploration of shared heat storage systems in the greenhouse horticulture industry," Energy, Elsevier, vol. 235(C).
    11. Sibilio, Sergio & Rosato, Antonio & Ciampi, Giovanni & Scorpio, Michelangelo & Akisawa, Atsushi, 2017. "Building-integrated trigeneration system: Energy, environmental and economic dynamic performance assessment for Italian residential applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 920-933.
    12. Mongibello, Luigi & Bianco, Nicola & Caliano, Martina & Graditi, Giorgio, 2016. "Comparison between two different operation strategies for a heat-driven residential natural gas-fired CHP system: Heat dumping vs. load partialization," Applied Energy, Elsevier, vol. 184(C), pages 55-67.
    13. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    14. Chesi, Andrea & Ferrara, Giovanni & Ferrari, Lorenzo & Magnani, Sandro & Tarani, Fabio, 2013. "Influence of the heat storage size on the plant performance in a Smart User case study," Applied Energy, Elsevier, vol. 112(C), pages 1454-1465.
    15. Cho, Woojin & Lee, Kwan-Soo, 2014. "A simple sizing method for combined heat and power units," Energy, Elsevier, vol. 65(C), pages 123-133.
    16. Asaee, S. Rasoul & Ugursal, V. Ismet & Beausoleil-Morrison, Ian, 2015. "Techno-economic evaluation of internal combustion engine based cogeneration system retrofits in Canadian houses – A preliminary study," Applied Energy, Elsevier, vol. 140(C), pages 171-183.
    17. Nuytten, Thomas & Claessens, Bert & Paredis, Kristof & Van Bael, Johan & Six, Daan, 2013. "Flexibility of a combined heat and power system with thermal energy storage for district heating," Applied Energy, Elsevier, vol. 104(C), pages 583-591.
    18. Ahmadisedigh, Hossein & Gosselin, Louis, 2022. "How can combined heating and cooling networks benefit from thermal energy storage? Minimizing lifetime cost for different scenarios," Energy, Elsevier, vol. 243(C).
    19. Isa, Normazlina Mat & Tan, Chee Wei & Yatim, A.H.M., 2018. "A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2236-2263.
    20. Marina Montero Carrero & Irene Rodríguez Sánchez & Ward De Paepe & Alessandro Parente & Francesco Contino, 2019. "Is There a Future for Small-Scale Cogeneration in Europe? Economic and Policy Analysis of the Internal Combustion Engine, Micro Gas Turbine and Micro Humid Air Turbine Cycles," Energies, MDPI, vol. 12(3), pages 1-27, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rsc:rsceui:2012/48. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: RSCAS web unit (email available below). General contact details of provider: https://edirc.repec.org/data/rsiueit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.