IDEAS home Printed from https://ideas.repec.org/p/rri/wpaper/2013wp04.html
   My bibliography  Save this paper

Can Spatial Dependence Enhance Industry Sustainability? The Case of Pasture-Based Beef

Author

Listed:
  • Inocencio Rodriguez

    (Division of Resource Management, West Virginia University)

  • Gerard D'Souza

    (Division of Resource Management, West Virginia University)

  • Thomas Griggs

    (Division of Plant & Soil Sciences, West Virginia University)

Abstract

Can sustainability be enhanced by maximizing the sum of private and social benefits from an industry? This might take place, for example, by identifying production options that increase profitability side-by-side with societal goals such as renewable energy production and carbon sequestration, healthier communities, environmental quality, and economic development. We explore this issue for pasture based beef (PBB), a nascent industry where industry profitability, community development, and quality of life can be enhanced by explicitly linking the PBB supply chain spatially and intertemporally, thereby increasing the sum of private and social benefits. We develop a framework based on optimal control theory that integrates a spatial component in which the production of PBB and alternative energy production as well as greenhouse gas emission reduction enhances private as well as social wealth. This model provides a basic foundation for developing agglomeration economies in a spatially dependent industry in which other locations are able to supply resources to given locations as a way of improving regional economic and environmental conditions. The framework is subsequently employed to identify possible industry conditions and configurations that demonstrate how profits, economic development, and environmental improvement can be created through increased pasture-beef production in a region where economic activities across locations play a crucial role across the spatial domain. Of course, the intensification of benefits derived from the agglomeration economies require coordination and cooperation among the key players within the impacted region.

Suggested Citation

  • Inocencio Rodriguez & Gerard D'Souza & Thomas Griggs, 2013. "Can Spatial Dependence Enhance Industry Sustainability? The Case of Pasture-Based Beef," Working Papers Working Paper 2013-04, Regional Research Institute, West Virginia University.
  • Handle: RePEc:rri:wpaper:2013wp04
    as

    Download full text from publisher

    File URL: https://researchrepository.wvu.edu/rri_pubs/12/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kenneth E. McConnell, 1983. "An Economic Model of Soil Conservation," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 65(1), pages 83-89.
    2. L. Allen Torell & Kenneth S. Lyon & E. Bruce Godfrey, 1991. "Long-Run versus Short-Run Planning Horizons and the Rangeland Stocking Rate Decision," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(3), pages 795-807.
    3. Richard B. Standiford & Richard E. Howitt, 1992. "Solving Empirical Bioeconomic Models: A Rangeland Management Application," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 74(2), pages 421-433.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:rri:wpaper:201304 is not listed on IDEAS
    2. Brausmann, Alexandra & Bretschger, Lucas, 2018. "Economic development on a finite planet with stochastic soil degradation," European Economic Review, Elsevier, vol. 108(C), pages 1-19.
    3. Nadella, Karthik & Deaton, Brady & Lawley, Chad & Weersink, Alfons, 2014. "Do farmers treat rented land differently than the land they own? A fixed effects model of farmer’s decision to adopt conservation practices on owned and rented land," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170633, Agricultural and Applied Economics Association.
    4. Alice Issanchou & Karine Daniel & Pierre Dupraz & Carole Ropars-Collet, 2018. "Soil resource and the profitability and sustainability of farms: A soil quality investment model," Working Papers SMART 18-01, INRAE UMR SMART.
    5. Hoag, Dana L., 1998. "The intertemporal impact of soil erosion on non-uniform soil profiles: A new direction in analyzing erosion impacts," Agricultural Systems, Elsevier, vol. 56(4), pages 415-429, April.
    6. Crutchfield, Stephen R. & Brazee, Richard J., 1990. "An Integrated Model of Surface and Ground Water Quality," 1990 Annual meeting, August 5-8, Vancouver, Canada 271011, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    7. Zhao, Zishun & Wahl, Thomas I. & Marsh, Thomas L., 2006. "Invasive Species Management: Foot-and-Mouth Disease in the U.S. Beef Industry," Agricultural and Resource Economics Review, Cambridge University Press, vol. 35(1), pages 98-115, April.
    8. Coxhead, Ian A. & Demeke, Bayou, 2006. "Modeling Spatially Differentiated Environmental Policy in a Philippine Watershed: Tradeoffs between Environmental Protection and Poverty Reduction," 2006 Annual meeting, July 23-26, Long Beach, CA 21115, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    9. Gregory L. Poe & Richard M. Klemme & Shawn J. McComb & John E. Ambrosious, 1991. "Commodity Programs and the Internalization of Erosion Costs: Do They Affect Crop Rotation Decisions?," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 13(2), pages 223-235.
    10. Coxhead, Ian A., 1997. "Induced innovation and land degradation in developing country agriculture," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 41(3), pages 1-28.
    11. Shiferaw, Bekele & Holden, Stein T., 2000. "Policy instruments for sustainable land management: the case of highland smallholders in Ethiopia," Agricultural Economics, Blackwell, vol. 22(3), pages 217-232, April.
    12. Kaitibie, Simeon & Epplin, Francis M. & Brorsen, B. Wade & Horn, Gerald W. & Krenzer, Eugene G., Jr. & Paisley, Steven I., 2002. "Derivation And Optimization Of A Stochastic Livestock Weight Gain Response To Stocking Density Model," 2002 Annual Meeting, July 28-31, 2002, Long Beach, California 36538, Western Agricultural Economics Association.
    13. Flichman, Guillermo & Jacquet, Florence, 2003. "Le couplage des modèles agronomiques et économiques : intérêt pour l'analyse des politiques," Cahiers d'Economie et de Sociologie Rurales (CESR), Institut National de la Recherche Agronomique (INRA), vol. 67.
    14. Inocencio Rodriguez & Gerard D'Souza & Alan Collins & Tim Phipps, 2011. "Social Benefits of Niche Agricultural Products: The Case of Pasture-Based Beef in Appalachia Part 1: The Conceptual Framework," Working Papers Working Paper 2011-06, Regional Research Institute, West Virginia University.
    15. Ian Coxhead & Sisira Jayasuriya, 1994. "Technical Change in Agriculture and Land Degradation in Developing Countries: A General Equilibrium Analysis," Land Economics, University of Wisconsin Press, vol. 70(1), pages 20-37.
    16. Segarra, Eduardo & Taylor, Daniel B., 1987. "Farm Level Dynamic Analysis Of Soil Conservation: An Application To The Piedmont Area Of Virginia," Southern Journal of Agricultural Economics, Southern Agricultural Economics Association, vol. 19(2), pages 1-13, December.
    17. Lakshminarayan, P. G. & Atwood, J. D. & Johnson, Stanley R. & Sposito, V. A., 1991. "Compromise Solution for Economic-Environmental Decisions in Agriculture," Staff General Research Papers Archive 375, Iowa State University, Department of Economics.
    18. Pascual, Unai & Barbier, Edward B., 2003. "Modelling Land Degradation In Low-Input Agriculture: The 'Population Pressure Hypothesis' Revised," 2003 Annual Meeting, August 16-22, 2003, Durban, South Africa 25827, International Association of Agricultural Economists.
    19. Ekbom, Anders & Brown, Gardner M. & Sterner, Thomas, 2009. "Muddy Waters: Soil Erosion and Downstream Externalities," Working Papers in Economics 341, University of Gothenburg, Department of Economics.
    20. Baerenklau, Kenneth A. & Nergis, Nermin & Schwabe, Kurt A., 2007. "Effects of Nutrient Restrictions on Confined Animal Facilities: Insights from a Structural Model," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon 10253, Western Agricultural Economics Association.
    21. Wen, Xiaojie & Yao, Shunbo & Sauer, Johannes, 2022. "Shadow prices and abatement cost of soil erosion in Shaanxi Province, China: Convex expectile regression approach," Ecological Economics, Elsevier, vol. 201(C).

    More about this item

    Keywords

    spatial optimal control; pasture-based beef; on-farm energy; sustainability;
    All these keywords.

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • Q4 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy
    • Q5 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rri:wpaper:2013wp04. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Randall Jackson (email available below). General contact details of provider: https://edirc.repec.org/data/rrwvuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.