Advanced Search
MyIDEAS: Login

Allocation of CO2 Emissions Allowances in the Regional Greenhouse Gas Cap-and-Trade Program

Contents:

Author Info

  • Burtraw, Dallas

    ()
    (Resources for the Future)

  • Palmer, Karen

    ()
    (Resources for the Future)

  • Kahn, Daniel

    ()
    (Resources for the Future)

Abstract

Cap-and-trade programs for air emissions have become the widely accepted, preferred approach to cost-effective pollution reduction. One of the important design questions in a trading program is how to initially distribute the emissions allowances. Under the Acid Rain program created by Title IV of the Clean Air Act, most emissions allowances were distributed to current emitters on the basis of a historic measure of electricity generation in an approach known as grandfathering. Recent proposals have suggested two alternative approaches: allocation according to a formula that is updated over time according to some performance metric in a recent year (the share of electricity generation or something else) and auctioning allowances to the highest bidders. Prior research has shown that the manner in which allowances for carbon dioxide (CO2) are initially distributed can have substantial effects on the social cost of the policy as well as on who wins and who loses as a result of the policy. Another concern with a regional cap-and-trade program like the Regional Greenhouse Gas Initiative (RGGI) is the effect that different approaches to allocating emissions allowances will have on the level of CO2 emissions outside the region, commonly called emissions leakage. In this research we model historic, auction, and updating approaches to allowance allocation that we call bookends, then model various variations on these approaches. We consider changes in measures such as electricity price, the mix of generation technologies, and the emissions of conventional pollutants inside and outside the RGGI region. We examine the social cost of the program, measured as the change in economic surplus, which is the type of measure used in benefit–cost analysis. We also examine the effects of different approaches to distributing allowances on the net present value of generation assets inside and outside the RGGI region. We find that how allowances are allocated has an effect on electricity price, consumption, and the mix of technologies used to generate electricity. Electricity price increases the most with a historic or auction approach. Coal-fired generation in the RGGI region decreases under all approaches but decreases the most under updating. Gas-fired generation decreases under historic and auction approaches but increases substantially under updating. Renewable generation increases under historic and auction approaches but decreases slightly under updating as a consequence of the expanded generation from gas. Consistent with the changes in the composition of generation, the decline in emissions of conventional pollutants including sulfur dioxide (SO2), nitrogen oxides (NOx), and mercury that was expected as a result of the Clean Air Interstate Rule is accelerated substantially as a result of the RGGI policy, particularly under updating. The cost of complying with SO2, NOx, and mercury rules declines similarly. We find that the social costs of the bookend auction and historic approaches are comparable and that the social cost of updating is roughly three times that of the other approaches. At the same time, updating yields greater emissions reductions on a national basis (because it produces less emissions leakage) and greater cumulative reductions in emissions at the national level than historic allocation. Varying the design of the updating approach can reduce its social costs but generally would increase leakage at the same time. An updating approach with allocation to all generators, including all nuclear and renewables has the lowest social cost within the RGGI region of any policy analyzed, although this result comes at the expense of costs imposed outside the region. When the approaches to allocation are mixed, we find the changes in electricity price, generation, and emissions are roughly a combination of the performance of each individual approach. In particular, social costs typically are lower under the scenarios that combine an auction with updating than when updating is the exclusive approach to distributing allowances. Who wins and who loses from the policy varies with the approach to allocation. Under a historic approach, producers in the RGGI region gain substantially and generally are better off than without the program; such is not true under an auction or updating. Producers also gain overall from the policy when a historic allocation is combined with an auction, but the gains are substantially less than in the 100% historic case. Producers outside the region tend to benefit considerably from the higher electricity price in the RGGI region but benefit the least under updating because the effect on electricity price is lowest. Consumers both inside and outside the RGGI region are adversely affected under all allocation approaches but much less so under updating because the change in electricity price is lowest. One exception is when eligibility for allowances under an updating allocation is limited to nonemitters only, in which case the electricity price increases substantially. Different types of generators fare differently under the various allocation approaches. Asset values for all types of generators are highest under a historic approach, although the difference between historic and auction approaches is small for nuclear generators. Compared with the baseline, both nuclear and existing gas-fired generators in the RGGI region gain under an auction. Only gas-fired generators gain under the bookend approach to updating, although nuclear generators benefit as well under updating designs that include them among those eligible for allowances. Coal-fired generators lose the most under updating. Moving from 100% updating to auctioning an increasingly larger share of allowances generally has a positive effect on asset values for all fuel types including coal. The one exception is that moving from 50% auction and 50% updating to 100% auction has a negative effect on the asset values for coal. Finally, we conduct sensitivity analyses with higher natural gas prices and constraints on electricity transmission capability. The social cost of the RGGI program does not appear to be sensitive to these constraints. Higher gas prices or transmission constraints alone impose significant costs that are larger than the effect of adding the RGGI policy. For example, their substantial effect on electricity price is greater than the added effect imposed by the RGGI program. The constraints that are modeled do not appear to have a strong impact on RGGI implementation. We also conduct a sensitivity analysis with renewables portfolio standard policies in place throughout the region. The resulting prices of electricity and CO2 emissions allowances are slightly lower than without the renewables policy.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.rff.org/RFF/documents/RFF-DP-05-25.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Resources For the Future in its series Discussion Papers with number dp-05-25.

as in new window
Length:
Date of creation: 16 Jun 2005
Date of revision:
Handle: RePEc:rff:dpaper:dp-05-25

Contact details of provider:
Web page: http://www.rff.org
More information through EDIRC

Related research

Keywords: emissions trading; allowance allocations; electricity; air pollution; auction; grandfathering; generation performance standard; output-based allocation; cost-effectiveness; greenhouse gases; climate change; global warming; carbon dioxide; sulfur dioxide; nitrogen oxides; mercury;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Ian W. H. Parry & Roberton C. Williams III & Lawrence H. Goulder, 1997. "When Can Carbon Abatement Policies Increase Welfare? The Fundamental Role of Distorted Factor Markets," NBER Working Papers 5967, National Bureau of Economic Research, Inc.
  2. Burtraw, Dallas & Palmer, Karen & Bharvirkar, Ranjit & Paul, Anthony, 2002. "The Effect on Asset Values of the Allocation of Carbon Dioxide Emission Allowances," The Electricity Journal, Elsevier, vol. 15(5), pages 51-62, June.
  3. Goulder, Lawrence H. & Parry, Ian W. H. & Williams III, Roberton C. & Burtraw, Dallas, 1999. "The cost-effectiveness of alternative instruments for environmental protection in a second-best setting," Journal of Public Economics, Elsevier, vol. 72(3), pages 329-360, June.
  4. Bovenberg, A.L. & Goulder, L.H. & Gurney, D.J., 2003. "Efficiency Costs of Meeting Industry-Distributional Constraints under Environmental Permits and Taxes," Discussion Paper 2003-86, Tilburg University, Center for Economic Research.
  5. Bovenberg, A Lans & Goulder, Lawrence H, 1996. "Optimal Environmental Taxation in the Presence of Other Taxes: General-Equilibrium Analyses," American Economic Review, American Economic Association, vol. 86(4), pages 985-1000, September.
  6. Bovenberg, A Lans & de Mooij, Ruud A, 1997. "Environmental Levies and Distortionary Taxation: Reply," American Economic Review, American Economic Association, vol. 87(1), pages 252-53, March.
  7. Bovenberg, A.L. & Mooij, R.A. de, 1994. "Environmental levies and distortionary taxation," Open Access publications from Tilburg University urn:nbn:nl:ui:12-152985, Tilburg University.
  8. Sterner, Thomas & Hoglund, Lena, 2000. "Output-Based Refunding of Emission Payments: Theory, Distribution of Costs, and International Experience," Discussion Papers dp-00-29, Resources For the Future.
  9. Parry Ian W. H., 1995. "Pollution Taxes and Revenue Recycling," Journal of Environmental Economics and Management, Elsevier, vol. 29(3), pages S64-S77, November.
  10. Lawrence H. Goulder & Ian W. H. Parry & Dallas Burtraw, 1996. "Revenue-Raising vs. Other Approaches to Environmental Protection: The Critical Significance of Pre-Existing Tax Distortions," NBER Working Papers 5641, National Bureau of Economic Research, Inc.
  11. Burtraw, Dallas & Palmer, Karen & Bharvirkar, Ranjit & Paul, Anthony, 2001. "The Effect of Allowance Allocation on the Cost of Carbon Emission Trading," Discussion Papers dp-01-30-, Resources For the Future.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Yeh, Sonia & Sperling, Daniel, 2010. "Low carbon fuel standards: Implementation scenarios and challenges," Energy Policy, Elsevier, vol. 38(11), pages 6955-6965, November.
  2. Palmer, Karen & Butraw, Dallas & Kahn, Danny, 2006. "Simple Rules for Targeting CO2 Allowance Allocations to Compensate Firms," Discussion Papers dp-06-28, Resources For the Future.
  3. Burtraw, Dallas, 2007. "State Efforts to Cap the Commons: Regulating Sources or Consumers?," Discussion Papers dp-07-49, Resources For the Future.
  4. Burtraw, Dallas & Kahn, Danny & Palmer, Karen, 2006. "CO2 Allowance Allocation in the Regional Greenhouse Gas Initiative and the Effect on Electricity Investors," The Electricity Journal, Elsevier, vol. 19(2), pages 79-90, March.
  5. Bushnell, James & Chen, Yihsu, 2012. "Allocation and leakage in regional cap-and-trade markets for CO2," Resource and Energy Economics, Elsevier, vol. 34(4), pages 647-668.
  6. Andrew Keeler, 2007. "State greenhouse gas reduction policies: a move in the right direction?," Policy Sciences, Springer, vol. 40(4), pages 353-365, December.
  7. Schleich, Joachim & Rogge, Karoline S. & Betz, Regina, 2008. "Incentives for energy efficiency in the EU Emissions Trading Scheme," Working Papers "Sustainability and Innovation" S2/2008, Fraunhofer Institute for Systems and Innovation Research (ISI).
  8. Knut Einar Rosendahl, 2007. "Incentives and quota prices in an emission trading scheme with updating," Discussion Papers 495, Research Department of Statistics Norway.
  9. Bernard, Alain L. & Fischer, Carolyn & Fox, Alan K., 2007. "Is there a rationale for output-based rebating of environmental levies?," Resource and Energy Economics, Elsevier, vol. 29(2), pages 83-101, May.
  10. Chen, Yihsu, 2009. "Does a regional greenhouse gas policy make sense? A case study of carbon leakage and emissions spillover," Energy Economics, Elsevier, vol. 31(5), pages 667-675, September.
  11. Palmer, Karen & Burtraw, Dallas & Paul, Anthony, 2009. "Allowance Allocation in a CO2 Emissions Cap-and-Trade Program for the Electricity Sector in California," Discussion Papers dp-09-41, Resources For the Future.
  12. Ian A. MacKenzie,, 2008. "On the Sequential Choice of Tradable Permit Allocations," CER-ETH Economics working paper series 08/83, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
  13. Burtraw, Dallas & Palmer, Karen & Wilson, Nathan, 2005. "The Impact of Long-Term Generation Contracts on Valuation of Electricity Generating Assets under the Regional Greenhouse Gas Initiative," Discussion Papers dp-05-37, Resources For the Future.
  14. Sijm, J. & Neuhoff, K. & Chen, Y., 2006. "CO2 cost pass through and windfall profits in the power sector," Cambridge Working Papers in Economics 0639, Faculty of Economics, University of Cambridge.
  15. Toshi Arimura & Dallas Burtraw & Alan J. Krupnick & Karen L. Palmer, 2007. "U.S. Climate Policy Developments," Discussion Papers dp-07-45, Resources For the Future.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:rff:dpaper:dp-05-25. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Webmaster).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.