IDEAS home Printed from https://ideas.repec.org/p/rep/wpaper/2014-06.html
   My bibliography  Save this paper

Carbon Neutrality of Hardwood and Softwood Biomass: Issues of Temporal Preference

Author

Listed:
  • Craig M.T. Johnston
  • G. Cornelis van Kooten

Abstract

The carbon flux from burning biomass for energy is often legislated, or simply assumed, to be carbon neutral as subsequent forest growth sequesters carbon lost during energy production. In this sense, there may be no net contributions to atmospheric carbon flux associated with biomass energy. However, trees may take decades to recover the CO2 released by burning, so assumed neutrality hinges on the fact that we count CO2 removals equally independent of when they occur. If dealing with climate change is an urgent matter, we may give higher weight to current CO2 emissions over those that occur in the decades to come. If there is no urgency in dealing with climate change, then all types of biomass will eventually return to carbon neutrality. Yet, if climate change is deemed an urgent matter, biomass never returns to carbon neutrality as we give future CO2 removals less weight. If urgency is high enough, biomass may be more emissions intensive than coal, as the discounted future removals are not enough to offset the relatively higher emissions intensity experience by burning biomass for energy. The race to adopt aggressive renewable energy targets implies climate change mitigation is an urgent matter. Yet, the increasing reliance on biomass for energy production suggests there is no time preference. In the end, the potential benefits of substituting biomass for coal to produce energy might be greatly exaggerated.

Suggested Citation

  • Craig M.T. Johnston & G. Cornelis van Kooten, 2014. "Carbon Neutrality of Hardwood and Softwood Biomass: Issues of Temporal Preference," Working Papers 2014-06, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
  • Handle: RePEc:rep:wpaper:2014-06
    as

    Download full text from publisher

    File URL: http://web.uvic.ca/~repa/publications/REPA%20working%20papers/WorkingPaper2014-06.pdf
    File Function: Final version, 2014
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Brad Stennes & Kurt Niquidet & G. Cornelis van Kooten, 2009. "Implications of Expanding Bioenergy Production from Wood in British Columbia: An Application of a Regional Wood Fibre Allocation Model," Working Papers 2009-02, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    2. Kurt Niquidet & Brad Stennes & G.Cornelis van Kooten, 2008. "Bio-energy from Mountain Pine Beetle Timber and Forest Residuals: The Economics Story," Working Papers 2008-11, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    3. Moiseyev, Alexander & Solberg, Birger & Kallio, A. Maarit I. & Lindner, Marcus, 2011. "An economic analysis of the potential contribution of forest biomass to the EU RES target and its implications for the EU forest industries," Journal of Forest Economics, Elsevier, vol. 17(2), pages 197-213, April.
    4. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9780521182935.
    5. Ilse Laureysens & Jan Bogaert & Ronny Blust & Reinhart Ceulemans, 2004. "Biomass production of 17 poplar clones in a short-rotation coppice culture on a waste disposal site and its relation to soil characteristics," ULB Institutional Repository 2013/170932, ULB -- Universite Libre de Bruxelles.
    6. Ince, Peter J. & Kramp, Andrew D. & Skog, Kenneth E. & Yoo, Do-il & Sample, V. Alaric, 2011. "Modeling future U.S. forest sector market and trade impacts of expansion in wood energy consumption," Journal of Forest Economics, Elsevier, vol. 17(2), pages 142-156, April.
    7. Lamers, Patrick & Junginger, Martin & Hamelinck, Carlo & Faaij, André, 2012. "Developments in international solid biofuel trade—An analysis of volumes, policies, and market factors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3176-3199.
    8. Global Energy Assessment Writing Team,, 2012. "Global Energy Assessment," Cambridge Books, Cambridge University Press, number 9781107005198.
    9. Ilse Laureysens & Reinhart Ceulemans & Jan Bogaert & Ronny Blust, 2004. "Erratum: Biomass production of 17 poplar clones in a short-rotation coppice culture on a waste disposal site and its relation to soil characteristics (Forest Ecology and Management (2004) 187 (295-309," ULB Institutional Repository 2013/202075, ULB -- Universite Libre de Bruxelles.
    10. Peter J. Ince & Andrew Kramp & Kenneth E. Skog, 2012. "Evaluating Economic Impacts of Expanded Global Wood Energy Consumption with the USFPM/GFPM Model," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 60(2), pages 211-237, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Johnston, Craig M.T. & van Kooten, G. Cornelis, 2015. "Economics of co-firing coal and biomass: An application to Western Canada," Energy Economics, Elsevier, vol. 48(C), pages 7-17.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lauri, Pekka & Havlík, Petr & Kindermann, Georg & Forsell, Nicklas & Böttcher, Hannes & Obersteiner, Michael, 2014. "Woody biomass energy potential in 2050," Energy Policy, Elsevier, vol. 66(C), pages 19-31.
    2. Pandey, Vimal Chandra & Bajpai, Omesh & Singh, Nandita, 2016. "Energy crops in sustainable phytoremediation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 58-73.
    3. Hurmekoski, Elias & Hetemäki, Lauri, 2013. "Studying the future of the forest sector: Review and implications for long-term outlook studies," Forest Policy and Economics, Elsevier, vol. 34(C), pages 17-29.
    4. Alice Favero & Robert Mendelsohn, 2013. "Evaluating the Global Role of Woody Biomass as a Mitigation Strategy," Working Papers 2013.37, Fondazione Eni Enrico Mattei.
    5. Johnston, Craig M.T. & Cornelis van Kooten, G., 2015. "Back to the past: Burning wood to save the globe," Ecological Economics, Elsevier, vol. 120(C), pages 185-193.
    6. Daigneault, Adam & Johnston, Craig & Korosuo, Anu & Baker, Justin S. & Forsell, Nicklas & Prestemon, Jeffrey P. & Abt, Robert C., 2019. "Developing Detailed Shared Socioeconomic Pathway (SSP) Narratives for the Global Forest Sector," Journal of Forest Economics, now publishers, vol. 34(1-2), pages 7-45, August.
    7. Nicolas Mansuy & Julie Barrette & Jérôme Laganière & Warren Mabee & David Paré & Shuva Gautam & Evelyne Thiffault & Saeed Ghafghazi, 2018. "Salvage harvesting for bioenergy in Canada: From sustainable and integrated supply chain to climate change mitigation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(5), September.
    8. Anne-Maree Dowd & Michelle Rodriguez & Talia Jeanneret, 2015. "Social Science Insights for the BioCCS Industry," Energies, MDPI, vol. 8(5), pages 1-19, May.
    9. Fankhauser, Samuel & Jotzo, Frank, 2017. "Economic growth and development with low-carbon energy," LSE Research Online Documents on Economics 86850, London School of Economics and Political Science, LSE Library.
    10. Tilmann Rave, 2013. "Innovation Indicators on Global Climate Change – R&D Expenditure and Patents," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 66(15), pages 34-41, August.
    11. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    12. Lykke E. Andersen & Luis Carlos Jemio, 2016. "Decentralization and poverty reduction in Bolivia: Challenges and opportunities," Development Research Working Paper Series 01/2016, Institute for Advanced Development Studies.
    13. Chen, Han & Huang, Ye & Shen, Huizhong & Chen, Yilin & Ru, Muye & Chen, Yuanchen & Lin, Nan & Su, Shu & Zhuo, Shaojie & Zhong, Qirui & Wang, Xilong & Liu, Junfeng & Li, Bengang & Tao, Shu, 2016. "Modeling temporal variations in global residential energy consumption and pollutant emissions," Applied Energy, Elsevier, vol. 184(C), pages 820-829.
    14. Inglesi-Lotz, Roula, 2017. "Social rate of return to R&D on various energy technologies: Where should we invest more? A study of G7 countries," Energy Policy, Elsevier, vol. 101(C), pages 521-525.
    15. Tom Mikunda & Tom Kober & Heleen de Coninck & Morgan Bazilian & Hilke R�sler & Bob van der Zwaan, 2014. "Designing policy for deployment of CCS in industry," Climate Policy, Taylor & Francis Journals, vol. 14(5), pages 665-676, September.
    16. Li, Yating & Fei, Yinxin & Zhang, Xiao-Bing & Qin, Ping, 2019. "Household appliance ownership and income inequality: Evidence from micro data in China," China Economic Review, Elsevier, vol. 56(C), pages 1-1.
    17. Xiaolun Wang & Xinlin Yao, 2020. "Fueling Pro-Environmental Behaviors with Gamification Design: Identifying Key Elements in Ant Forest with the Kano Model," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    18. Florian Knobloch & Hector Pollitt & Unnada Chewpreecha & Vassilis Daioglou & Jean-Francois Mercure, 2017. "Simulating the deep decarbonisation of residential heating for limiting global warming to 1.5C," Papers 1710.11019, arXiv.org, revised May 2018.
    19. He, Gang & Victor, David G., 2017. "Experiences and lessons from China’s success in providing electricity for all," Resources, Conservation & Recycling, Elsevier, vol. 122(C), pages 335-338.
    20. Jun Nakatani & Tamon Maruyama & Kosuke Fukuchi & Yuichi Moriguchi, 2015. "A Practical Approach to Screening Potential Environmental Hotspots of Different Impact Categories in Supply Chains," Sustainability, MDPI, vol. 7(9), pages 1-15, August.

    More about this item

    Keywords

    Bioenergy; Climate Change; Forestry;
    All these keywords.

    JEL classification:

    • Q23 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Forestry
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rep:wpaper:2014-06. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: G.C. van Kooten (email available below). General contact details of provider: https://edirc.repec.org/data/devicca.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.