Advanced Search
MyIDEAS: Login to save this paper or follow this series

Non-linear filtering with state dependant transition probabilities: A threshold (size effect) SV model

Contents:

Author Info

  • Adam Clements
  • Scott White

    (School of Economics and Finance, Queensland University of Technology)

Abstract

This paper considers the size effect, where volatility dynamics are dependant upon the current level of volatility within an stochastic volatility framework. A non-linear filtering algorithm is proposed where the dynamics of the latent variable is conditioned on its current level. This allows for the estimation of a stochastic volatility model where dynamics are dependant on the level of volatility. Empirical results suggest that volatility dynamics are in fact influenced by the level of prevailing volatility. When volatility is relatively low (high), volatility is extremely (not) persistent with little (a great deal of) noise.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://external-apps.qut.edu.au/business/documents/discussionPapers/2005/No%20191%20-%20Clements.pdf
Download Restriction: no

Bibliographic Info

Paper provided by School of Economics and Finance, Queensland University of Technology in its series School of Economics and Finance Discussion Papers and Working Papers Series with number 191.

as in new window
Length:
Date of creation: 15 Jun 2005
Date of revision:
Handle: RePEc:qut:dpaper:191

Contact details of provider:
Postal: GPO Box 2434, BRISBANE QLD 4001
Email:
Web page: http://www.bus.qut.edu.au/faculty/economics/
More information through EDIRC

Related research

Keywords: Non-linear filtering; stochastic volatility; size effect; threshold;

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Ding, Zhuanxin & Granger, Clive W. J. & Engle, Robert F., 1993. "A long memory property of stock market returns and a new model," Journal of Empirical Finance, Elsevier, vol. 1(1), pages 83-106, June.
  2. Benjamin M. Friedman & David I. Laibson, 1989. "Economic Implications of Extraordinary Movements in Stock Prices," Brookings Papers on Economic Activity, Economic Studies Program, The Brookings Institution, vol. 20(2), pages 137-190.
  3. Gourieroux, Christian & Monfort, Alain, 1992. "Qualitative threshold ARCH models," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 159-199.
  4. Ghysels, E. & Harvey, A. & Renault, E., 1996. "Stochastic Volatility," Cahiers de recherche 9613, Centre interuniversitaire de recherche en économie quantitative, CIREQ.
  5. Watanabe, Toshiaki, 1999. "A Non-linear Filtering Approach to Stochastic Volatility Models with an Application to Daily Stock Returns," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(2), pages 101-21, March-Apr.
  6. So, Mike K P & Li, W K & Lam, K, 2002. "A Threshold Stochastic Volatility Model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 21(7), pages 473-500, November.
  7. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-70, March.
  8. Longin, Francois M, 1997. "The Threshold Effect in Expected Volatility: A Model Based on Asymmetric Information," Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 837-69.
  9. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
  10. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-34, October.
  11. Friedman, Moshe & Harris, Lawrence, 1998. "A Maximum Likelihood Approach for Non-Gaussian Stochastic Volatility Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 284-91, July.
  12. Tauchen, George E & Pitts, Mark, 1983. "The Price Variability-Volume Relationship on Speculative Markets," Econometrica, Econometric Society, vol. 51(2), pages 485-505, March.
  13. Scott I. White & Adam E. Clements & Stan Hurn, 2004. "Discretised Non-Linear Filtering for Dynamic Latent Variable Models: with Application to Stochastic Volatility," Econometric Society 2004 Australasian Meetings 46, Econometric Society.
  14. González-Rivera Gloria, 1998. "Smooth-Transition GARCH Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 3(2), pages 1-20, July.
  15. Andersen, Torben G, 1996. " Return Volatility and Trading Volume: An Information Flow Interpretation of Stochastic Volatility," Journal of Finance, American Finance Association, vol. 51(1), pages 169-204, March.
  16. Engle, Robert F & Ng, Victor K, 1993. " Measuring and Testing the Impact of News on Volatility," Journal of Finance, American Finance Association, vol. 48(5), pages 1749-78, December.
  17. Pagan, Adrian, 1996. "The econometrics of financial markets," Journal of Empirical Finance, Elsevier, vol. 3(1), pages 15-102, May.
  18. Clark, Peter K, 1973. "A Subordinated Stochastic Process Model with Finite Variance for Speculative Prices," Econometrica, Econometric Society, vol. 41(1), pages 135-55, January.
  19. Bollerslev, Tim & Chou, Ray Y. & Kroner, Kenneth F., 1992. "ARCH modeling in finance : A review of the theory and empirical evidence," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 5-59.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:qut:dpaper:191. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Angela Fletcher).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.