Advanced Search
MyIDEAS: Login

A Practitioner's Guide to Bayesian Estimation of Discrete Choice Dynamic Programming Models

Contents:

Author Info

  • Andrew Ching

    ()
    (University of Toronto)

  • Susumu Imai

    ()
    (Queen's University)

  • Masakazu Ishihara

    ()
    (University of Toronto)

  • Neelam Jain

    ()
    (Northern Illinois University)

Abstract

This paper provides a step-by-step guide to estimating discrete choice dynamic programming (DDP) models using the Bayesian Dynamic Programming algorithm developed by Imai Jain and Ching (2008) (IJC). The IJC method combines the DDP solution algorithm with the Bayesian Markov Chain Monte Carlo algorithm into a single algorithm, which solves the DDP model and estimates its structural parameters simultaneously. The main computational advantage of this estimation algorithm is the efficient use of information obtained from the past iterations. In the conventional Nested Fixed Point algorithm, most of the information obtained in the past iterations remains unused in the current iteration. In contrast, the Bayesian Dynamic Programming algorithm extensively uses the computational results obtained from the past iterations to help solving the DDP model at the current iterated parameter values. Consequently, it significantly alleviates the computational burden of estimating a DDP model. We carefully discuss how to implement the algorithm in practice, and use a simple dynamic store choice model to illustrate how to apply this algorithm to obtain parameter estimates.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://qed.econ.queensu.ca/working_papers/papers/qed_wp_1201.pdf
File Function: First version 2009
Download Restriction: no

Bibliographic Info

Paper provided by Queen's University, Department of Economics in its series Working Papers with number 1201.

as in new window
Length: 49 pages
Date of creation: Apr 2009
Date of revision:
Handle: RePEc:qed:wpaper:1201

Contact details of provider:
Postal: Kingston, Ontario, K7L 3N6
Phone: (613) 533-2250
Fax: (613) 533-6668
Email:
Web page: http://qed.econ.queensu.ca/
More information through EDIRC

Related research

Keywords: Bayesian Dynamic Programming; Discrete Choice Dynamic Programming; Markov Chain Monte Carlo;

Other versions of this item:

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Zhou, Yiyi, 2012. "Failure to Launch in Two-Sided Markets: A Study of the U.S. Video Game Market," MPRA Paper 42002, University Library of Munich, Germany.
  2. Andrew T. Ching & Tülin Erdem & Michael P. Keane, 2013. "Learning Models: An Assessment of Progress, Challenges and New Developments," Economics Papers 2013-W07, Economics Group, Nuffield College, University of Oxford.
  3. Amoroso, S., 2013. "Heterogeneity of innovative, collaborative, and productive firm-level processes," Open Access publications from Tilburg University urn:nbn:nl:ui:12-5663713, Tilburg University.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:qed:wpaper:1201. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Mark Babcock).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.