IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/87859.html
   My bibliography  Save this paper

An Analysis of Urban Environmental Kuznets Curve of CO2 Emissions: Empirical Analysis of 276 Global Metropolitan Areas

Author

Listed:
  • Fujii, Hidemichi
  • Iwata, Kazuyuki
  • Chapman, Andrew
  • Kagawa, Shigemi
  • Managi, Shunsuke

Abstract

This study analyzed the relationship between urban CO2 emissions and economic growth applying the environmental Kuznets curve hypothesis. The objective of this study is to investigate how urban CO2 emissions and their composition have changed with urban economic growth, depending on city characteristics, using a dataset of metropolitan areas. We obtained data for 276 cities in 26 countries for the years 2000, 2005, and 2008. The dataset includes urban CO2 emissions, GDP, and population. Additionally, data regarding compact city variables are applied to determinants analysis using an econometric approach. The results demonstrate an inverted U-shape relationship between urban CO2 emissions and urban economic growth. Additionally, an inverted U-shape relationship is observed for the transport and residential & industry sectors. However, the turning points of each inverted U-shape curve varies. This result implies that we can better understand urban policies for reducing urban CO2 emissions by considering the characteristics of each sector.

Suggested Citation

  • Fujii, Hidemichi & Iwata, Kazuyuki & Chapman, Andrew & Kagawa, Shigemi & Managi, Shunsuke, 2018. "An Analysis of Urban Environmental Kuznets Curve of CO2 Emissions: Empirical Analysis of 276 Global Metropolitan Areas," MPRA Paper 87859, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:87859
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/87859/1/MPRA_paper_87859.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Fujii, Hidemichi & Managi, Shunsuke, 2015. "Economic development and multiple air pollutant emissions from the industrial sector," MPRA Paper 67027, University Library of Munich, Germany.
    2. Jinhwan Oh & ChiHyun Yun, 2014. "Environmental Kuznets curve revisited with special reference to Eastern Europe and Central Asia," International Area Studies Review, Center for International Area Studies, Hankuk University of Foreign Studies, vol. 17(4), pages 359-374, December.
    3. Mizobuchi, Kenichi & Takeuchi, Kenji, 2016. "Replacement or additional purchase: The impact of energy-efficient appliances on household electricity saving under public pressures," Energy Policy, Elsevier, vol. 93(C), pages 137-148.
    4. Kaika, Dimitra & Zervas, Efthimios, 2013. "The Environmental Kuznets Curve (EKC) theory—Part A: Concept, causes and the CO2 emissions case," Energy Policy, Elsevier, vol. 62(C), pages 1392-1402.
    5. Shahbaz, Muhammad & Shafiullah, Muhammad & Papavassiliou, Vassilios G. & Hammoudeh, Shawkat, 2017. "The CO2–growth nexus revisited: A nonparametric analysis for the G7 economies over nearly two centuries," Energy Economics, Elsevier, vol. 65(C), pages 183-193.
    6. Wang, Mei & Rieger, Marc Oliver & Hens, Thorsten, 2016. "How time preferences differ: Evidence from 53 countries," Journal of Economic Psychology, Elsevier, vol. 52(C), pages 115-135.
    7. Madhu Khanna & Narasimha D. Rao, 2009. "Supply and Demand of Electricity in the Developing World," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 567-596, September.
    8. Yang, Xuechun & Lou, Feng & Sun, Mingxing & Wang, Renqing & Wang, Yutao, 2017. "Study of the relationship between greenhouse gas emissions and the economic growth of Russia based on the Environmental Kuznets Curve," Applied Energy, Elsevier, vol. 193(C), pages 162-173.
    9. Acaravci, Ali & Ozturk, Ilhan, 2010. "On the relationship between energy consumption, CO2 emissions and economic growth in Europe," Energy, Elsevier, vol. 35(12), pages 5412-5420.
    10. Wang, Shaojian & Liu, Xiaoping, 2017. "China’s city-level energy-related CO2 emissions: Spatiotemporal patterns and driving forces," Applied Energy, Elsevier, vol. 200(C), pages 204-214.
    11. Uchida, Hirotsugu & Nelson, Andrew, 2010. "Agglomeration Index Towards a New Measure of Urban Concentration," WIDER Working Paper Series 029, World Institute for Development Economic Research (UNU-WIDER).
    12. Yunpeng Luo & Huai Chen & Qiu'an Zhu & Changhui Peng & Gang Yang & Yanzheng Yang & Yao Zhang, 2014. "Relationship between Air Pollutants and Economic Development of the Provincial Capital Cities in China during the Past Decade," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-14, August.
    13. Al-Mulali, Usama & Saboori, Behnaz & Ozturk, Ilhan, 2015. "Investigating the environmental Kuznets curve hypothesis in Vietnam," Energy Policy, Elsevier, vol. 76(C), pages 123-131.
    14. Lee Liu, 2009. "Urban environmental performance in China: a sustainability divide?," Sustainable Development, John Wiley & Sons, Ltd., vol. 17(1), pages 1-18.
    15. Wang, Yuan & Zhang, Chen & Lu, Aitong & Li, Li & He, Yanmin & ToJo, Junji & Zhu, Xiaodong, 2017. "A disaggregated analysis of the environmental Kuznets curve for industrial CO2 emissions in China," Applied Energy, Elsevier, vol. 190(C), pages 172-180.
    16. Michael Fritsch & Pamela Mueller, 2008. "The effect of new business formation on regional development over time: the case of Germany," Small Business Economics, Springer, vol. 30(1), pages 15-29, January.
    17. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, December.
    18. Michael Lokshin, 2006. "Difference-based semiparametric estimation of partial linear regression models," Stata Journal, StataCorp LP, vol. 6(3), pages 377-383, September.
    19. Unknown, 2016. "Energy for Sustainable Development," Conference Proceedings 253270, Guru Arjan Dev Institute of Development Studies (IDSAsr).
    20. Zhang, Xinjing & Chen, Haisheng & Xu, Yujie & Li, Wen & He, Fengjuan & Guo, Huan & Huang, Ye, 2017. "Distributed generation with energy storage systems: A case study," Applied Energy, Elsevier, vol. 204(C), pages 1251-1263.
    21. Taedong Lee & Susan Meene, 2012. "Who teaches and who learns? Policy learning through the C40 cities climate network," Policy Sciences, Springer;Society of Policy Sciences, vol. 45(3), pages 199-220, September.
    22. Jeffrey M. Berry & Kent E. Portney, 2013. "Sustainability and Interest Group Participation in City Politics," Sustainability, MDPI, vol. 5(5), pages 1-21, May.
    23. repec:rre:publsh:v:40:y:2010:i:3:p:257-272 is not listed on IDEAS
    24. World Bank, 2008. "Global Economic Prospects 2008 : Technology Diffusion in the Developing World," World Bank Publications - Books, The World Bank Group, number 6335, December.
    25. Melo, Patricia C. & Graham, Daniel J. & Noland, Robert B., 2009. "A meta-analysis of estimates of urban agglomeration economies," Regional Science and Urban Economics, Elsevier, vol. 39(3), pages 332-342, May.
    26. Shi, Kaifang & Chen, Yun & Li, Linyi & Huang, Chang, 2018. "Spatiotemporal variations of urban CO2 emissions in China: A multiscale perspective," Applied Energy, Elsevier, vol. 211(C), pages 218-229.
    27. Kamrul Hassan & Ruhul Salim, 2015. "Population ageing, income growth and CO2emission," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 42(1), pages 54-67, January.
    28. Dinda, Soumyananda, 2004. "Environmental Kuznets Curve Hypothesis: A Survey," Ecological Economics, Elsevier, vol. 49(4), pages 431-455, August.
    29. Good, Nicholas & Martínez Ceseña, Eduardo A. & Zhang, Lingxi & Mancarella, Pierluigi, 2016. "Techno-economic and business case assessment of low carbon technologies in distributed multi-energy systems," Applied Energy, Elsevier, vol. 167(C), pages 158-172.
    30. Hirotsugu Uchida & Andrew Nelson, 2010. "Agglomeration Index: Towards a New Measure of Urban Concentration," WIDER Working Paper Series wp-2010-029, World Institute for Development Economic Research (UNU-WIDER).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei, Honghong & Lahiri, Radhika, 2022. "Urbanization, energy-use intensity and emissions: A sectoral approach," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 667-684.
    2. Song, Yan & Sun, Junjie & Zhang, Ming & Su, Bin, 2020. "Using the Tapio-Z decoupling model to evaluate the decoupling status of China's CO2 emissions at provincial level and its dynamic trend," Structural Change and Economic Dynamics, Elsevier, vol. 52(C), pages 120-129.
    3. Lin Cui & Alistair Hunt & Bruce Morley, 2021. "The Effectiveness of Environmental Spending in China and the Environmental Kuznets Curve," Sustainability, MDPI, vol. 13(21), pages 1-17, November.
    4. Wang, Miao & Feng, Chao, 2021. "The win-win ability of environmental protection and economic development during China's transition," Technological Forecasting and Social Change, Elsevier, vol. 166(C).
    5. Pablo Ponce & Cristiana Oliveira & Viviana Álvarez & María de la Cruz del Río-Rama, 2020. "The Liberalization of the Internal Energy Market in the European Union: Evidence of Its Influence on Reducing Environmental Pollution," Energies, MDPI, vol. 13(22), pages 1-17, November.
    6. Binbin Chang & Lei Chen, 2021. "Land Economic Efficiency and Improvement of Environmental Pollution in the Process of Sustainable Urbanization: Case of Eastern China," Land, MDPI, vol. 10(8), pages 1-23, August.
    7. Harizi Riadh, 2021. "Land artificialization, economic growth, and road insecurity: Theoretical improvements and empirical validation for the case of Algeria," Technium Social Sciences Journal, Technium Science, vol. 18(1), pages 241-255, April.
    8. Gómez-Gardars, Emanuel Birkir & Rodríguez-Macias, Antonio & Tena-García, Jorge Luis & Fuentes-Cortés, Luis Fabián, 2022. "Assessment of the water–energy–carbon nexus in energy systems: A multi-objective approach," Applied Energy, Elsevier, vol. 305(C).
    9. Peiqi Hu & Kai Zhou & Haoxi Zhang & Zhong Ma & Jingyuan Li, 2023. "The Cause and Correlation Network of Air Pollution from a Spatial Perspective: Evidence from the Beijing–Tianjin–Hebei Region," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    10. Wang, Shaojian & Shi, Chenyi & Fang, Chuanglin & Feng, Kuishuang, 2019. "Examining the spatial variations of determinants of energy-related CO2 emissions in China at the city level using Geographically Weighted Regression Model," Applied Energy, Elsevier, vol. 235(C), pages 95-105.
    11. Xinhua Tong & Shurui Guo & Haiyan Duan & Zhiyuan Duan & Chang Gao & Wu Chen, 2022. "Carbon-Emission Characteristics and Influencing Factors in Growing and Shrinking Cities: Evidence from 280 Chinese Cities," IJERPH, MDPI, vol. 19(4), pages 1-17, February.
    12. Yanelli Nunez & Jaime Benavides & Jenni A. Shearston & Elena M. Krieger & Misbath Daouda & Lucas R. F. Henneman & Erin E. McDuffie & Jeff Goldsmith & Joan A. Casey & Marianthi-Anna Kioumourtzoglou, 2024. "An environmental justice analysis of air pollution emissions in the United States from 1970 to 2010," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    13. Thomas Wiedmann & Guangwu Chen & Anne Owen & Manfred Lenzen & Michael Doust & John Barrett & Kristian Steele, 2021. "Three‐scope carbon emission inventories of global cities," Journal of Industrial Ecology, Yale University, vol. 25(3), pages 735-750, June.
    14. Yi-Bin Chiu & Wenwen Zhang, 2023. "Moderating Effect of Financial Development on the Relationship between Renewable Energy and Carbon Emissions," Energies, MDPI, vol. 16(3), pages 1-18, February.
    15. Ansari, Mohd Arshad, 2022. "Re-visiting the Environmental Kuznets curve for ASEAN: A comparison between ecological footprint and carbon dioxide emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    16. Gruszecki Lech & Jozwik Bartosz & Kyophilavong Phouphet, 2020. "International Relations in the Environmental Kuznets Curve - Theoretical Considerations," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 964-982.
    17. repec:thr:techub:10018:y:2021:i:1:p:241-255 is not listed on IDEAS
    18. Charifa Haouraji & Badia Mounir & Ilham Mounir & Abdelmajid Farchi, 2021. "Exploring the Relationship between Residential CO 2 Emissions, Urbanization, Economic Growth, and Residential Energy Consumption: Evidence from the North Africa Region," Energies, MDPI, vol. 14(18), pages 1-19, September.
    19. Tianhui Fan & Andrew Chapman, 2022. "Policy Driven Compact Cities: Toward Clarifying the Effect of Compact Cities on Carbon Emissions," Sustainability, MDPI, vol. 14(19), pages 1-19, October.
    20. Ming Meng & Wei Shang & Xinfang Wang & Tingting Pang, 2020. "When will China fulfill its carbon‐related intended nationally determined contributions? An in‐depth environmental Kuznets curve analysis," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(5), pages 1039-1049, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chun Chih Chen, 2021. "The path to a 2025 nuclear-free Taiwan: An analysis of dynamic competition among emissions, energy, and economy," Energy & Environment, , vol. 32(4), pages 668-689, June.
    2. Muhammad Shahbaz & Avik Sinha, 2019. "Environmental Kuznets curve for CO2emissions: a literature survey," Journal of Economic Studies, Emerald Group Publishing Limited, vol. 46(1), pages 106-168, January.
    3. Sunde, Tafirenyika, 2018. "Revisiting the Environmental Kuznets Curve and the Role of Energy Consumption: The Case of Namibia," MPRA Paper 86507, University Library of Munich, Germany.
    4. Panagiotis Fotis & Michael Polemis, 2018. "Sustainable development, environmental policy and renewable energy use: A dynamic panel data approach," Sustainable Development, John Wiley & Sons, Ltd., vol. 26(6), pages 726-740, November.
    5. Shahbaz, Muhammad & Nasir, Muhammad Ali & Roubaud, David, 2018. "Environmental degradation in France: The effects of FDI, financial development, and energy innovations," Energy Economics, Elsevier, vol. 74(C), pages 843-857.
    6. Bigerna, Simona & D'Errico, Maria Chiara & Polinori, Paolo, 2022. "Understanding the green-growth: which pathways cities undertake in their climate programs," MPRA Paper 114156, University Library of Munich, Germany.
    7. Mehmet Akif, Destek & Muhammad, Shahbaz & Ilyas, Okumus & Shawkat, Hammoudeh & Avik, Sinha, 2020. "The relationship between economic growth and carbon emissions in G-7 countries: evidence from time-varying parameters with a long history," MPRA Paper 100514, University Library of Munich, Germany, revised Apr 2020.
    8. Shahbaz, Muhammad & Sinha, Avik, 2019. "Environmental Kuznets Curve for CO2 emission: A survey of empirical literature," MPRA Paper 100257, University Library of Munich, Germany, revised 2019.
    9. Azad Haider & Muhammad Iftikhar ul Husnain & Wimal Rankaduwa & Farzana Shaheen, 2021. "Nexus between Nitrous Oxide Emissions and Agricultural Land Use in Agrarian Economy: An ARDL Bounds Testing Approach," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    10. Myo Myo Htike & Anil Shrestha & Makoto Kakinaka, 2022. "Investigating whether the environmental Kuznets curve hypothesis holds for sectoral CO2 emissions: evidence from developed and developing countries," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(11), pages 12712-12739, November.
    11. Maralgua Och, 2017. "Empirical Investigation of the Environmental Kuznets Curve Hypothesis for Nitrous Oxide Emissions for Mongolia," International Journal of Energy Economics and Policy, Econjournals, vol. 7(1), pages 117-128.
    12. Sun, Huaping & Samuel, Clottey Attuquaye & Kofi Amissah, Joshua Clifford & Taghizadeh-Hesary, Farhad & Mensah, Isaac Adjei, 2020. "Non-linear nexus between CO2 emissions and economic growth: A comparison of OECD and B&R countries," Energy, Elsevier, vol. 212(C).
    13. Shahbaz, Muhammad & Shafiullah, Muhammad & Khalid, Usman & Song, Malin, 2020. "A nonparametric analysis of energy environmental Kuznets Curve in Chinese Provinces," Energy Economics, Elsevier, vol. 89(C).
    14. Balado-Naves, Roberto & Baños-Pino, José Francisco & Mayor, Matías, 2018. "Do countries influence neighbouring pollution? A spatial analysis of the EKC for CO2 emissions," Energy Policy, Elsevier, vol. 123(C), pages 266-279.
    15. Béchir Ben Lahouel & Younes Ben Zaied & Guo-liang Yang & Maria-Giuseppina Bruna & Yaoyao Song, 2022. "A non-parametric decomposition of the environmental performance-income relationship: evidence from a non-linear model," Annals of Operations Research, Springer, vol. 313(1), pages 525-558, June.
    16. Ansari, Mohd Arshad, 2022. "Re-visiting the Environmental Kuznets curve for ASEAN: A comparison between ecological footprint and carbon dioxide emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Rodríguez, Miguel & Pena-Boquete, Yolanda & Pardo-Fernández, Juan Carlos, 2016. "Revisiting Environmental Kuznets Curves through the energy price lens," Energy Policy, Elsevier, vol. 95(C), pages 32-41.
    18. Aslan, Alper & Destek, Mehmet Akif & Okumus, İlyas, 2017. "Sectoral carbon emissions and economic growth in the US: Further evidence from rolling window estimation method," MPRA Paper 106961, University Library of Munich, Germany.
    19. Seker, Fahri & Ertugrul, Hasan Murat & Cetin, Murat, 2015. "The impact of foreign direct investment on environmental quality: A bounds testing and causality analysis for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 347-356.
    20. Barra, Cristian & Zotti, Roberto, 2016. "Investigating the impact of national income on environmental pollution. International evidence," MPRA Paper 74149, University Library of Munich, Germany.

    More about this item

    Keywords

    urban CO2 emissions; environmental Kuznets curve; compact city; metropolitan area;
    All these keywords.

    JEL classification:

    • O18 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Urban, Rural, Regional, and Transportation Analysis; Housing; Infrastructure
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth
    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:87859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.