Advanced Search
MyIDEAS: Login to save this paper or follow this series

Algorithmic complexity theory and the relative efficiency of financial markets

Contents:

Author Info

  • Giglio, Ricardo
  • Matsushita, Raul
  • Figueiredo, Annibal
  • Gleria, Iram
  • Da Silva, Sergio

Abstract

Financial economists usually assess market efficiency in absolute terms. This is to be viewed as a shortcoming. One way of dealing with the relative efficiency of markets is to resort to the efficiency interpretation provided by algorithmic complexity theory. We employ such an approach in order to rank 36 stock exchanges, 37 individual company stocks, and 19 US dollar exchange rates in terms of their relative efficiency.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/8704/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 8704.

as in new window
Length:
Date of creation: 10 May 2008
Date of revision:
Handle: RePEc:pra:mprapa:8704

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: financial efficiency; algorithmic complexity;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
  2. Oh, Gabjin & Kim, Seunghwan & Eom, Cheoljun, 2007. "Market efficiency in foreign exchange markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 382(1), pages 209-212.
  3. Ching-Wei Tan, 1999. "Estimating the Complexity Function of Financial Time Series: An Estimation Based on Predictive Stochastic Complexity," Computing in Economics and Finance 1999 1143, Society for Computational Economics.
  4. Meredith Beechey & David Gruen & James Vickery, 2000. "The Efficient Market Hypothesis: A Survey," RBA Research Discussion Papers rdp2000-01, Reserve Bank of Australia.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Alvarez-Ramirez, J. & Rodriguez, E. & Espinosa-Paredes, G., 2012. "A partisan effect in the efficiency of the US stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4923-4932.
  2. Zunino, Luciano & Zanin, Massimiliano & Tabak, Benjamin M. & Pérez, Darío G. & Rosso, Osvaldo A., 2010. "Complexity-entropy causality plane: A useful approach to quantify the stock market inefficiency," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1891-1901.
  3. Brandouy, Olivier & Delahaye, Jean-Paul & Ma, Lin & Zenil, Hector, 2014. "Algorithmic complexity of financial motions," Research in International Business and Finance, Elsevier, vol. 30(C), pages 336-347.
  4. Giglio, Ricardo & Da Silva, Sergio, 2009. "Ranking the stocks listed on Bovespa according to their relative efficiency," MPRA Paper 22720, University Library of Munich, Germany.
  5. Cristescu, C.P. & Stan, C. & Scarlat, E.I., 2009. "The dynamics of exchange rate time series and the chaos game," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(23), pages 4845-4855.
  6. Olivier Brandouy & Jean-Paul Delahaye & Lin Ma & Hector Zenil, 2012. "Algorithmic Complexity of Financial Motions," ASSRU Discussion Papers 1204, ASSRU - Algorithmic Social Science Research Unit.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:8704. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.