Advanced Search
MyIDEAS: Login

Implementation of Walrasian Allocations in Economies with Infinite Dimension Commodity Spaces

Contents:

Author Info

  • Tian, Guoqiang

Abstract

This paper considers the problem of implementing constrained Walrasian allocations for exchange economies with infinitely many commodities and finitely many agents. The mechanism we provide is a feasible and continuous mechanism whose Nash allocations and strong Nash allocations coincide with constrained Walrasian allocations. This mechanism allows not only preferences and initial endowments but also coalition patterns to be privately observed, and it works not only for three or more agents, but also for two-agent economies, and thus it is a unified mechanism which is irrespective of the number of agents.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/41228/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 41228.

as in new window
Length:
Date of creation: 2002
Date of revision:
Handle: RePEc:pra:mprapa:41228

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: Implementation; Walrasian Allocations; Infinite Dimension Commodity Spaces;

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Yannelis, Nicholas C. & Zame, William R., 1986. "Equilibria in Banach lattices without ordered preferences," Journal of Mathematical Economics, Elsevier, vol. 15(2), pages 85-110, April.
  2. Bezalel Peleg, 1996. "A continuous double implementation of the constrained Walras equilibrium," Review of Economic Design, Springer, vol. 2(1), pages 89-97, December.
  3. Nakamura, Shinsuke, 1990. "A feasible Nash implementation of Walrasian equilibria in the two-agent economy," Economics Letters, Elsevier, vol. 34(1), pages 5-9, September.
  4. Hurwicz, Leonid, 1979. "On allocations attainable through Nash equilibria," Journal of Economic Theory, Elsevier, vol. 21(1), pages 140-165, August.
  5. Hurwicz, L, 1979. "Outcome Functions Yielding Walrasian and Lindahl Allocations at Nash Equilibrium Points," Review of Economic Studies, Wiley Blackwell, vol. 46(2), pages 217-25, April.
  6. Hong, Lu, 1995. "Nash Implementation in Production Economies," Economic Theory, Springer, vol. 5(3), pages 401-17, May.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:41228. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.