Advanced Search
MyIDEAS: Login to save this paper or follow this series

Two-person cake-cutting: the optimal number of cuts

Contents:

Author Info

  • Barbanel, Julius B.
  • Brams, Steven J.

Abstract

A cake is a metaphor for a heterogeneous, divisible good. When two players divide such a good, there is always a perfect division—one that is efficient (Pareto-optimal), envy-free, and equitable—which can be effected with a finite number of cuts under certain mild conditions; this is not always the case when there are more than two players (Brams, Jones, and Klamler, 2011b). We not only establish the existence of such a division but also provide an algorithm for determining where and how many cuts must be made, relating it to an algorithm, “Adjusted Winner” (Brams and Taylor, 1996, 1999), that yields a perfect division of multiple homogenous goods.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/34263/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 34263.

as in new window
Length:
Date of creation: 22 Oct 2011
Date of revision:
Handle: RePEc:pra:mprapa:34263

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: Cake-cutting; fair division; envy-freeness; adjusted winner; heterogeneous good;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Barbanel, Julius B. & Brams, Steven J., 2010. "Two-person pie-cutting: The fairest cuts," MPRA Paper 22703, University Library of Munich, Germany.
  2. Nurmi, Hannu, 1996. "Fair division: From cake-cutting to dispute resolution : Steven J. Brams and Alan D. Taylor, (Cambridge University Press, Cambridge, 1995) pp. xiv + 272, US$ 54.95 (hardcover), US$ 18.95 (paper)," European Journal of Political Economy, Elsevier, vol. 12(1), pages 169-172, April.
  3. Barbanel, Julius B. & Brams, Steven J., 2004. "Cake division with minimal cuts: envy-free procedures for three persons, four persons, and beyond," Mathematical Social Sciences, Elsevier, vol. 48(3), pages 251-269, November.
  4. I. D. Hill, 2008. "Mathematics and Democracy: Designing Better Voting and Fair-division Procedures," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(4), pages 1032-1033.
  5. Brams,Steven J. & Taylor,Alan D., 1996. "Fair Division," Cambridge Books, Cambridge University Press, number 9780521556446, 9.
  6. Weller, Dietrich, 1985. "Fair division of a measurable space," Journal of Mathematical Economics, Elsevier, vol. 14(1), pages 5-17, February.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Brams, Steven J. & Jones, Michael A. & Klamler, Christian, 2011. "N-Person cake-cutting: there may be no perfect division," MPRA Paper 34264, University Library of Munich, Germany.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:34263. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.