Advanced Search
MyIDEAS: Login to save this paper or follow this series

The particle system model of income and wealth more likely to imply an analogue of thermodynamics in social science

Contents:

Author Info

  • Angle, John

Abstract

The Inequality Process (IP) and the Saved Wealth Model (SW) are particle system models of income distribution. The IP’s social science meta-theory requires its stationary distribution to fit the distribution of labor income conditioned on education. The Saved Wealth Model (SW) is an ad hoc modification of the particle system model of the Kinetic Theory of Gases (KTG). The KTG implies the laws of gas thermodynamics. The IP is a particle system similar to the SW and KTG, but less closely related to the KTG than the SW. This paper shows that the IP passes the key empirical test required of it by its social science meta-theory better than the SW. The IP’s advantage increases as the U.S. labor force becomes more educated. The IP is the more likely of the two particle systems to underlie an analogue of gas thermodynamics in social science as the KTG underlies gas thermodynamics.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://mpra.ub.uni-muenchen.de/28864/
File Function: original version
Download Restriction: no

Bibliographic Info

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 28864.

as in new window
Length:
Date of creation: 14 Feb 2011
Date of revision:
Handle: RePEc:pra:mprapa:28864

Contact details of provider:
Postal: Schackstr. 4, D-80539 Munich, Germany
Phone: +49-(0)89-2180-2219
Fax: +49-(0)89-2180-3900
Web page: http://mpra.ub.uni-muenchen.de
More information through EDIRC

Related research

Keywords: Inequality Process; Kinetic Theory of Gases; labor income distribution; particle system; Saved Wealth Model; social science analogue of thermodynamics;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. A. Chakraborti & B.K. Chakrabarti, 2000. "Statistical mechanics of money: how saving propensity affects its distribution," The European Physical Journal B - Condensed Matter and Complex Systems, Springer, vol. 17(1), pages 167-170, September.
  2. Enrico Scalas & Mauro Gallegati & Eric Guerci & David Mas & Alessandra Tedeschi, 2006. "Growth and Allocation of Resources in Economics: The Agent-Based Approach," Papers physics/0608221, arXiv.org.
  3. Anirban Chakraborti & Bikas K. Chakrabarti, 2000. "Statistical mechanics of money: How saving propensity affects its distribution," Papers cond-mat/0004256, arXiv.org, revised Jun 2000.
  4. Chatterjee, Arnab & K. Chakrabarti, Bikas & Manna, S.S, 2004. "Pareto law in a kinetic model of market with random saving propensity," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 335(1), pages 155-163.
  5. Adrian Dragulescu & Victor M. Yakovenko, 2000. "Statistical mechanics of money," Papers cond-mat/0001432, arXiv.org, revised Aug 2000.
  6. S. Ispolatov & P.L. Krapivsky & S. Redner, 1998. "Wealth distributions in asset exchange models," The European Physical Journal B - Condensed Matter and Complex Systems, Springer, vol. 2(2), pages 267-276, March.
  7. Arnab Chatterjee & Bikas K. Chakrabarti & S. S. Manna, 2003. "Pareto Law in a Kinetic Model of Market with Random Saving Propensity," Papers cond-mat/0301289, arXiv.org, revised Jan 2004.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:28864. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Ekkehart Schlicht).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.